11 research outputs found
Recommended from our members
Prediction of Treatment Response to Neoadjuvant Chemotherapy for Breast Cancer via Early Changes in Tumor Heterogeneity Captured by DCE-MRI Registration.
We analyzed DCE-MR images from 132 women with locally advanced breast cancer from the I-SPY1 trial to evaluate changes of intra-tumor heterogeneity for augmenting early prediction of pathologic complete response (pCR) and recurrence-free survival (RFS) after neoadjuvant chemotherapy (NAC). Utilizing image registration, voxel-wise changes including tumor deformations and changes in DCE-MRI kinetic features were computed to characterize heterogeneous changes within the tumor. Using five-fold cross-validation, logistic regression and Cox regression were performed to model pCR and RFS, respectively. The extracted imaging features were evaluated in augmenting established predictors, including functional tumor volume (FTV) and histopathologic and demographic factors, using the area under the curve (AUC) and the C-statistic as performance measures. The extracted voxel-wise features were also compared to analogous conventional aggregated features to evaluate the potential advantage of voxel-wise analysis. Voxel-wise features improved prediction of pCR (AUC = 0.78 (±0.03) vs 0.71 (±0.04), p < 0.05 and RFS (C-statistic = 0.76 ( ± 0.05), vs 0.63 ( ± 0.01)), p < 0.05, while models based on analogous aggregate imaging features did not show appreciable performance changes (p > 0.05). Furthermore, all selected voxel-wise features demonstrated significant association with outcome (p < 0.05). Thus, precise measures of voxel-wise changes in tumor heterogeneity extracted from registered DCE-MRI scans can improve early prediction of neoadjuvant treatment outcomes in locally advanced breast cancer
Recommended from our members
Prediction of Treatment Response to Neoadjuvant Chemotherapy for Breast Cancer via Early Changes in Tumor Heterogeneity Captured by DCE-MRI Registration.
We analyzed DCE-MR images from 132 women with locally advanced breast cancer from the I-SPY1 trial to evaluate changes of intra-tumor heterogeneity for augmenting early prediction of pathologic complete response (pCR) and recurrence-free survival (RFS) after neoadjuvant chemotherapy (NAC). Utilizing image registration, voxel-wise changes including tumor deformations and changes in DCE-MRI kinetic features were computed to characterize heterogeneous changes within the tumor. Using five-fold cross-validation, logistic regression and Cox regression were performed to model pCR and RFS, respectively. The extracted imaging features were evaluated in augmenting established predictors, including functional tumor volume (FTV) and histopathologic and demographic factors, using the area under the curve (AUC) and the C-statistic as performance measures. The extracted voxel-wise features were also compared to analogous conventional aggregated features to evaluate the potential advantage of voxel-wise analysis. Voxel-wise features improved prediction of pCR (AUC = 0.78 (±0.03) vs 0.71 (±0.04), p < 0.05 and RFS (C-statistic = 0.76 ( ± 0.05), vs 0.63 ( ± 0.01)), p < 0.05, while models based on analogous aggregate imaging features did not show appreciable performance changes (p > 0.05). Furthermore, all selected voxel-wise features demonstrated significant association with outcome (p < 0.05). Thus, precise measures of voxel-wise changes in tumor heterogeneity extracted from registered DCE-MRI scans can improve early prediction of neoadjuvant treatment outcomes in locally advanced breast cancer
Recommended from our members
Impact of deformable registration methods for prediction of recurrence free survival response to neoadjuvant chemotherapy in breast cancer: Results from the ISPY 1/ACRIN 6657 trial.
PurposeImage registration plays a vital role in spatially aligning multiple MRI scans for better longitudinal assessment of tumor morphological features. The objective was to evaluate the effect of registration accuracy of six established deformable registration methods(ANTs, DRAMMS, ART, NiftyReg, SSD-FFD, and NMI-FFD) on the predictive value of extracted radiomic features when modeling recurrence-free-survival(RFS) for women after neoadjuvant chemotherapy(NAC) for locally advanced breast cancer.Methods130 women had DCE-MRI scans available from the first two visits in the ISPY1/ACRIN-6657 cohort. We calculated the transformation field from each of the different deformable registration methods, and used it to compute voxel-wise parametric-response-maps(PRM) for established four kinetic features.104-radiomic features were computed from each PRM map to characterize intra-tumor heterogeneity. We evaluated performance for RFS using Cox-regression, C-statistic, and Kaplan-Meier(KM) plots.ResultsA baseline model(F1:Age, Race, and Hormone-receptor-status) had a 0.54 C-statistic, and model F2(baseline + functional-tumor-volume at early treatment visit(FTV2)) had 0.63. The F2+ANTs had the highest C-statistic(0.72) with the smallest landmark differences(5.40±4.40mm) as compared to other models. The KM curve for model F2 gave p=0.004 for separation between women above and below the median hazard compared to the model F1(p=0.31). A models augmented with radiomic features, also achieved significant KM curve separation(p<0.001) except the F2+ART model.ConclusionIncorporating image registration in quantifying changes in tumor heterogeneity during NAC can improve prediction of RFS. Radiomic features of PRM maps derived from warping the DCE-MRI kinetic maps using ANTs registration method further improved the early prediction of RFS as compared to other methods
Recommended from our members
Expert tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6657/I-SPY1.
Breast cancer is one of the most pervasive forms of cancer and its inherent intra- and inter-tumor heterogeneity contributes towards its poor prognosis. Multiple studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of having consistency in: a) data quality, b) quality of expert annotation of pathology, and c) availability of baseline results from computational algorithms. To address these limitations, here we propose the enhancement of the I-SPY1 data collection, with uniformly curated data, tumor annotations, and quantitative imaging features. Specifically, the proposed dataset includes a) uniformly processed scans that are harmonized to match intensity and spatial characteristics, facilitating immediate use in computational studies, b) computationally-generated and manually-revised expert annotations of tumor regions, as well as c) a comprehensive set of quantitative imaging (also known as radiomic) features corresponding to the tumor regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments
Expert tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6657/I-SPY1
Abstract Breast cancer is one of the most pervasive forms of cancer and its inherent intra- and inter-tumor heterogeneity contributes towards its poor prognosis. Multiple studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of having consistency in: a) data quality, b) quality of expert annotation of pathology, and c) availability of baseline results from computational algorithms. To address these limitations, here we propose the enhancement of the I-SPY1 data collection, with uniformly curated data, tumor annotations, and quantitative imaging features. Specifically, the proposed dataset includes a) uniformly processed scans that are harmonized to match intensity and spatial characteristics, facilitating immediate use in computational studies, b) computationally-generated and manually-revised expert annotations of tumor regions, as well as c) a comprehensive set of quantitative imaging (also known as radiomic) features corresponding to the tumor regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments
Recommended from our members
Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy.
BackgroundEarly changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor's ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival (RFS).MethodsA total of 100 women from the ACRIN 6657/I-SPY 1 trial were retrospectively analyzed. We estimated MammaPrint, PAM50 ROR-S, and p53 mutation scores from publicly available gene expression data and generated four, voxel-wise 3-D radiomic kinetic maps from DCE-MR images at both pre- and early-treatment time points. Within the primary lesion from each kinetic map, features of change in radiomic heterogeneity were summarized into 6 principal components.ResultsWe identify two imaging phenotypes of change in intratumor heterogeneity (p < 0.01) demonstrating significant Kaplan-Meier curve separation (p < 0.001). Adding phenotypes to established prognostic factors, functional tumor volume (FTV), MammaPrint, PAM50, and p53 scores in a Cox regression model improves the concordance statistic for predicting RFS from 0.73 to 0.79 (p = 0.002).ConclusionsThese results demonstrate an important step in combining personalized molecular signatures and longitudinal imaging data towards improved prognosis