5,928 research outputs found
Quantum-based Mechanical Force Realization in Pico-Newton Range
We propose mechanical force realization based on flux quantization in the
pico-Newton range. By controlling the number of flux quantum in a
superconducting annulus, a force can be created as integer multiples of a
constant step. For a 50 nm-thick Nb annulus with the inner and outer radii of 5
m and 10 m, respectively, and the field gradient of 10 T/m the force
step is estimated to be 184 fN. The stability against thermal fluctuations is
also addressed.Comment: 5 pages; 4 figure
Self-Supervised Motion Retargeting with Safety Guarantee
In this paper, we present self-supervised shared latent embedding (S3LE), a
data-driven motion retargeting method that enables the generation of natural
motions in humanoid robots from motion capture data or RGB videos. While it
requires paired data consisting of human poses and their corresponding robot
configurations, it significantly alleviates the necessity of time-consuming
data-collection via novel paired data generating processes. Our self-supervised
learning procedure consists of two steps: automatically generating paired data
to bootstrap the motion retargeting, and learning a projection-invariant
mapping to handle the different expressivity of humans and humanoid robots.
Furthermore, our method guarantees that the generated robot pose is
collision-free and satisfies position limits by utilizing nonparametric
regression in the shared latent space. We demonstrate that our method can
generate expressive robotic motions from both the CMU motion capture database
and YouTube videos
A Passivity-based Nonlinear Admittance Control with Application to Powered Upper-limb Control under Unknown Environmental Interactions
This paper presents an admittance controller based on the passivity theory
for a powered upper-limb exoskeleton robot which is governed by the nonlinear
equation of motion. Passivity allows us to include a human operator and
environmental interaction in the control loop. The robot interacts with the
human operator via F/T sensor and interacts with the environment mainly via
end-effectors. Although the environmental interaction cannot be detected by any
sensors (hence unknown), passivity allows us to have natural interaction. An
analysis shows that the behavior of the actual system mimics that of a nominal
model as the control gain goes to infinity, which implies that the proposed
approach is an admittance controller. However, because the control gain cannot
grow infinitely in practice, the performance limitation according to the
achievable control gain is also analyzed. The result of this analysis indicates
that the performance in the sense of infinite norm increases linearly with the
control gain. In the experiments, the proposed properties were verified using 1
degree-of-freedom testbench, and an actual powered upper-limb exoskeleton was
used to lift and maneuver the unknown payload.Comment: Accepted in IEEE/ASME Transactions on Mechatronics (T-MECH
Boosting thermal conductivity by surface plasmon polaritons propagating along a thin Ti film
We experimentally demonstrate a boosted in-plane thermal conduction by
surface plasmon polaritons (SPPs) propagating along a thin Ti film on a glass
substrate. Owing to a lossy nature of metal, SPPs can propagate over
centimeter-scale distance even with a supported metal film, and resulting
ballistic heat conduction can be quantitatively validated. Further, for a
100-nm-thick Ti film on glass substrate, a significant enhancement of in-plane
thermal conductivity compared to bulk value () is experimentally
shown. This study will provide a new avenue to employ SPPs for heat dissipation
along a supported thin film, which can be readily applied to mitigate hot-spot
issues in microelectronics.Comment: 3 figure
Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases
IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model
PURPOSE. While the association between the gut microbiome and the immune system has been studied in autoimmune disorders, little is known about ocular disease. Previously we reported that IRT5, a mixture of five probiotic strains, could suppress autoimmune dry eye. In this study, we investigated the mechanism by which IRT5 performs its immunomodulatory function in a mouse model of autoimmune dry eye. METHODS. NOD.B10.H2b mice were used as an autoimmune dry eye model. Either IRT5 or PBS was gavaged orally for 3 weeks, with or without 5 days of antibiotic pretreatment. The effects on clinical features, extraorbital lacrimal gland and spleen proteins, and fecal microbiota were analyzed. RESULTS. The ocular staining score was lower, and tear secretion was higher, in the IRT5-treated groups than in the PBS-treated groups. After IRT5 treatment, the downregulated lacrimal gland proteins were enriched in the biological processes of defense response and immune system process. The relative abundances of 33 operational taxonomic units were higher, and 53 were lower, in the feces of the IRT5-treated groups than in those of the PBS-treated groups. IRT5 administration without antibiotic pretreatment also showed immunomodulatory functions with increases in the Lactobacillus helveticus group and Lactobacillus hamsteri. Additional proteomic assays revealed a decrease of proteins related to antigen-presenting processes in the CD11b(+) and CD11c(+) cells of spleen in the IRT5-treated groups. CONCLUSIONS. Changes in the gut microbiome after IRT5 treatment improved clinical manifestations in the autoimmune dry eye model via the downregulation of antigen-presenting processes in immune networks.11Ysciescopu
Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation
The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-alpha-induced NF-kappa B transcriptional activity in the NF-kappa B luciferase assay and pro-inflammatory genes' expression by blocking phosphorylation of I kappa B and NF-kappa B in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-kappa B phosphorylation and pro-inflammatory genes' expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes' expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes
Dimerization-Induced Fermi-Surface Reconstruction in IrTe2
We report a de Haas-van Alphen (dHvA) oscillation study on IrTe2 single crystals showing complex dimer formations. By comparing the angle dependence of dHvA oscillations with band structure calculations, we show distinct Fermi surface reconstruction induced by a 1/5-type and a 1/8-type dimerizations. This verifies that an intriguing quasi-two-dimensional conducting plane across the layers is induced by dimerization in both cases. A phase transition to the 1/8 phase with higher dimer density reveals that local instabilities associated with intra-and interdimer couplings are the main driving force for complex dimer formations in IrTe2.X11149sciescopu
- …