93 research outputs found

    High Conservatism in the Composition of Scent Gland Secretions in Cyphophthalmid Harvestmen: Evidence from Pettalidae

    Get PDF
    The scent gland secretion of Austropurcellia forsteri was analyzed by gas chromatography–mass spectrometry, providing the first description of the secretion chemistry in the cyphophthalmid family Pettalidae. The secretion contained a total of 21 compounds: About 60% of the whole secretion consisted of a series of saturated, mono-unsaturated and doubly unsaturated methylketones, from C11 to C15, with a cluster of saturated and mono-unsaturated C13-methylketones dominating. A second fraction included several naphthoquinones such as 1,4-naphthoquinone (ca. 20% of secretion), 6-methyl-1,4-naphthoquinone (ca. 17%), and minor amounts of chloronaphthoquinones (ca. 2%). When compared with scent gland compositions of other representatives of cyphophthalmids (e.g. from families Sironidae and Stylocellidae), a highly conservative chemistry of cyphophthalmid secretions is apparent, based on a restricted number of methylketones and naphthoquinones

    Naphthoquinones and Anthraquinones from Scent Glands of a Dyspnoid Harvestman, Paranemastoma quadripunctatum

    Get PDF
    Extracts of Paranemastoma quadripunctatum (Opiliones, Dyspnoi, Nemastomatidae) contained seven components, all of which likely originated from the secretion of well-developed prosomal scent glands. The two main components (together accounting for more than 90% of the secretion) were identified as 1,4-naphthoquinone and 6-methyl-1,4-naphthoquinone. The minor components were 1,4-naphthalenediol, two methoxy-naphthoquinones (2-methoxy-1,4-naphthoquinone, and 2-methoxy-6-methyl-1,4-naphthoquinone) and two anthraquinones (2-methyl-9,10-anthraquinone and a dimethyl-9,10-anthraquinone). While some chemical data on scent gland secretions of the other suborders of Opiliones (Cyphophthalmi, palpatorean Eupnoi, and Laniatores) already exist, this is the first report on the scent gland chemistry in the Dyspnoi. Naphthoquinones are known scent gland exudates of Cyphophthalmi and certain Eupnoi, methoxy-naphthoquinones and anthraquinones are new for opilionid scent gland secretions

    Intense hurricane activity over the past 1500 years at South Andros Island, the Bahamas

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in E. J., Donnelly, J. P., van Hengstum, P. J., Wiman, C., Sullivan, R. M., Winkler, T. S., d'Entremont, N. E., Toomey, M., & Albury, N. Intense hurricane activity over the past 1500 years at South Andros Island, the Bahamas. Paleoceanography and Paleoclimatology, 34(11), (2019): 1761-1783, doi:10.1029/2019PA003665.Hurricanes cause substantial loss of life and resources in coastal areas. Unfortunately, historical hurricane records are too short and incomplete to capture hurricane‐climate interactions on multi‐decadal and longer timescales. Coarse‐grained, hurricane‐induced deposits preserved in blue holes in the Caribbean can provide records of past hurricane activity extending back thousands of years. Here we present a high resolution record of intense hurricane events over the past 1500 years from a blue hole on South Andros Island on the Great Bahama Bank. This record is corroborated by shorter reconstructions from cores collected at two nearby blue holes. The record contains coarse‐grained event deposits attributable to known historical hurricane strikes within age uncertainties. Over the past 1500 years, South Andros shows evidence of four active periods of hurricane activity. None of these active intervals occurred in the past 163 years. We suggest that Intertropical Convergence Zone position modulates hurricane activity on the island based on a correlation with Cariaco Basin titanium concentrations. An anomalous gap in activity on South Andros Island in the early 13th century corresponds to a period of increased volcanism. The patterns of hurricane activity reconstructed from South Andros Island closely match those from the northeastern Gulf of Mexico but are anti‐phased with records from New England. We suggest that either changes in local environmental conditions (e.g., SSTs) or a northeastward shift in storm tracks can account for the increased activity in the western North Atlantic when the Gulf of Mexico and southeastern Caribbean are less active.This work was funded by the National Science Foundation Graduate Research Fellowship (to E.J.W.), National Science Foundation grant OCE‐1356708 (to J.P.D. and P.J.vH.), the Dalio Explore Foundation and the USGS Land Change Science Program (M.R.T.). We are grateful to members of WHOI Coastal Systems Group, in particular Stephanie Madsen, for their help in the processing core samples. We thank two anonymous reviewers, Matthew Lachniet, Marci Robinson (USGS) and Miriam Jones (USGS) for their helpful feedback on earlier versions of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The data are available on the National Climatic Data Center (http://www.ncdc.noaa.gov/dataaccess/paleoclimatology‐data) and WHOI Coastal Systems Group (https://web.whoi.edu/coastal‐group/) websites

    \uc9tude des Opilions Cyphophthalmes (Arachnides) du Portugal : description d\u27Odontosiro lusitanicus n. g., n. sp

    No full text
    Volume: 33Start Page: 512End Page: 51

    Monstruosit\ue9s observ\ue9es chez les Opilions

    No full text
    Volume: 35Start Page: 167End Page: 17
    • 

    corecore