262 research outputs found

    Flux Discharge Cascades in Various Dimensions

    Full text link
    We study the dynamics of electric flux discharge by charged particle pair or spherical string or membrane production in various dimensions. When electric flux wraps at least one compact cycle, we find that a single "pair" production event can initiate a cascading decay in real time that "shorts out" the flux and discharges many units of it. This process arises from local dynamics in the compact space, and so is invisible in the dimensionally-reduced truncation. It occurs in theories as simple as the Schwinger model on a circle, and has implications for any theory with compact dimensions and electric flux, including string theories and the string landscape.Comment: 19+8 pages, 3 figures, 3 appendice

    A new diagrammatic representation for correlation functions in the in-in formalism

    Get PDF
    In this paper we provide an alternative method to compute correlation functions in the in-in formalism, with a modified set of Feynman rules to compute loop corrections. The diagrammatic expansion is based on an iterative solution of the equation of motion for the quantum operators with only retarded propagators, which makes each diagram intrinsically local (whereas in the standard case locality is the result of several cancellations) and endowed with a straightforward physical interpretation. While the final result is strictly equivalent, as a bonus the formulation presented here also contains less graphs than other diagrammatic approaches to in-in correlation functions. Our method is particularly suitable for applications to cosmology.Comment: 14 pages, matches the published version. includes a modified version of axodraw.sty that works with the Revtex4 clas

    Probability representation and quantumness tests for qudits and two-mode light states

    Full text link
    Using tomographic-probability representation of spin states, quantum behavior of qudits is examined. For a general j-qudit state we propose an explicit formula of quantumness witnetness whose negative average value is incompatible with classical statistical model. Probability representations of quantum and classical (2j+1)-level systems are compared within the framework of quantumness tests. Trough employing Jordan-Schwinger map the method is extended to check quantumness of two-mode light states.Comment: 5 pages, 2 figures, PDFLaTeX, Contribution to the 11th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'09), June 22-26, 2009, Olomouc, Czech Republi

    General Gauge Mediation with Gauge Messengers

    Get PDF
    We generalize the General Gauge Mediation formalism to allow for the possibility of gauge messengers. Gauge messengers occur when charged matter fields of the susy-breaking sector have non-zero F-terms, which leads to tree-level, susy-breaking mass splittings in the gauge fields. A classic example is that SU(5) / SU(3) x SU(2) x U(1) gauge fields could be gauge messengers. We give a completely general, model independent, current-algebra based analysis of gauge messenger mediation of susy-breaking to the visible sector. Characteristic aspects of gauge messengers include enhanced contributions to gaugino masses, (tachyonic) sfermion mass-squareds generated already at one loop, and also at two loops, and significant one-loop A-terms, already at the messenger scale.Comment: 79 pages, 5 figure

    Duality Invariant Actions and Generalised Geometry

    Full text link
    We construct the non-linear realisation of the semi-direct product of E(11) and its first fundamental representation at lowest order and appropriate to spacetime dimensions four to seven. This leads to a non-linear realisation of the duality groups and introduces fields that depend on a generalised space which possess a generalised vielbein. We focus on the part of the generalised space on which the duality groups alone act and construct an invariant action.Comment: 59 pages (typos fixed and added comments

    Euler-Heisenberg lagrangians and asymptotic analysis in 1+1 QED, part 1: Two-loop

    Full text link
    We continue an effort to obtain information on the QED perturbation series at high loop orders, and particularly on the issue of large cancellations inside gauge invariant classes of graphs, using the example of the l - loop N - photon amplitudes in the limit of large photons numbers and low photon energies. As was previously shown, high-order information on these amplitudes can be obtained from a nonperturbative formula, due to Affleck et al., for the imaginary part of the QED effective lagrangian in a constant field. The procedure uses Borel analysis and leads, under some plausible assumptions, to a number of nontrivial predictions already at the three-loop level. Their direct verification would require a calculation of this `Euler-Heisenberg lagrangian' at three-loops, which seems presently out of reach. Motivated by previous work by Dunne and Krasnansky on Euler-Heisenberg lagrangians in various dimensions, in the present work we initiate a new line of attack on this problem by deriving and proving the analogous predictions in the simpler setting of 1+1 dimensional QED. In the first part of this series, we obtain a generalization of the formula of Affleck et al. to this case, and show that, for both Scalar and Spinor QED, it correctly predicts the leading asymptotic behaviour of the weak field expansion coefficients of the two loop Euler-Heisenberg lagrangians.Comment: 28 pages, 1 figures, final published version (minor modifications, refs. added

    The Stokes Phenomenon and Quantum Tunneling for de Sitter Radiation in Nonstationary Coordinates

    Full text link
    We study quantum tunneling for the de Sitter radiation in the planar coordinates and global coordinates, which are nonstationary coordinates and describe the expanding geometry. Using the phase-integral approximation for the Hamilton-Jacobi action in the complex plane of time, we obtain the particle-production rate in both coordinates and derive the additional sinusoidal factor depending on the dimensionality of spacetime and the quantum number for spherical harmonics in the global coordinates. This approach resolves the factor of two problem in the tunneling method.Comment: LaTex 10 pages, no figur

    Quantum gravitational contributions to quantum electrodynamics

    Full text link
    Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. But that claim has been very controversial with the situation inconclusive. Here I report an analysis (free from earlier controversies) demonstrating that that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the reduction of the electric charge at high energies, a result known as asymptotic freedom.Comment: To be published in Nature. 19 pages LaTeX, no figure

    Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor

    Full text link
    Most holographic models of superconducting systems neglect the effects of dynamical boundary gauge fields during the process of spontaneous symmetry-breaking. Usually a global symmetry gets broken. This yields a superfluid, which then is gauged "weakly" afterwards. In this work we build (and probe the dynamics of) a holographic model in which a local boundary symmetry is spontaneously broken instead. We compute two-point functions of dynamical non-Abelian gauge fields in the normal and in the broken phase, and find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave superconductor in (1+1) dimensions. The ground state of this model also breaks (1+1)-dimensional parity spontaneously, while the Hamiltonian is parity-invariant. We discuss possible implications of our results for a wider class of holographic liquids.Comment: 32 pages, 12 figures; v3: string theory derivation of setup added (section 3.1), improved presentation, version accepted by JHEP; v2: paragraph added to discussion, figure added, references added, typos correcte
    • 

    corecore