12 research outputs found

    The mechanisms by which polyamines accelerate tumor spread

    Get PDF
    Increased polyamine concentrations in the blood and urine of cancer patients reflect the enhanced levels of polyamine synthesis in cancer tissues arising from increased activity of enzymes responsible for polyamine synthesis. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as cancer tissues, food, and intestinal microbiota. Because polyamines are indispensable for cell growth, increased polyamine availability enhances cell growth. However, the malignant potential of cancer is determined by its capability to invade to surrounding tissues and metastasize to distant organs. The mechanisms by which increased polyamine levels enhance the malignant potential of cancer cells and decrease anti-tumor immunity are reviewed. Cancer cells with a greater capability to synthesize polyamines are associated with increased production of proteinases, such as serine proteinase, matrix metalloproteinases, cathepsins, and plasminogen activator, which can degrade surrounding tissues. Although cancer tissues produce vascular growth factors, their deregulated growth induces hypoxia, which in turn enhances polyamine uptake by cancer cells to further augment cell migration and suppress CD44 expression. Increased polyamine uptake by immune cells also results in reduced cytokine production needed for anti-tumor activities and decreases expression of adhesion molecules involved in anti-tumor immunity, such as CD11a and CD56. Immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer activities. Recent investigations revealed that increased polyamine availability enhances the capability of cancer cells to invade and metastasize to new tissues while diminishing immune cells' anti-tumor immune functions

    POLYAMINES AND POLYAMINO ACIDS REGULATION OF CYTOSOLIC TYROSINE PROTEIN (TYR-P) KINASE FROM HUMAN ERYTHROCYTES

    No full text
    In vitro regulation of cytosolic tyrosine protein (Tyr-P) kinase from human erythrocytes by polyamines, polyamino acids, negative charged compounds or by insulin using angiotensin II or poly (Glu-Tyr)4:1 as substrates was studied. All the three polyamines, putrescine (Put), spermidine (Spd) and spermine (Spm) stimulated the Tyr-P kinase activity in a dose dependent manner. Spm stimulated Tyr-P kinase activity higher than Put and Spd whether the substrate was angiotension II or poly (Glu-Tyr)4:1. Polyamino acids (polyornithine, polyarginine, polyglutamic acid and polyaspartic acid) did not affect significantly the Tyr-P kinase phosphorylation except polylysine which significantly stimulated the Tyr-P kinase activity. Negative charged compounds (chondroitin sulfate A, B and C) and heparin inhibited the Tyr-P kinase phosphorylation while insulin did not influence the enzyme activity in the presence of either substrates

    Aminoguanidine reduces glomerular inducible nitric oxide synthase (iNOS) and transforming growth factor-beta 1 (TGF-β1) mRNA expression and diminishes glomerulosclerosis in NZB/W F1 mice

    No full text
    Over-expression of iNOS is implicated in the pathogenesis of glomerulonephritis in animal models of systemic lupus erythematosus. The aim of this study was to evaluate the effect of aminoguanidine, a selective inhibitor of iNOS, for the protection from glomerulosclerosis in NZB/W F1 mice. Female NZB/W F1 mice (n = 8) were treated with aminoguanidine (1 g/l) in drinking water for 4 months starting at age 2 months before the onset of glomerulonephritis. Controls were age- and sex-matched mice (n = 10) without aminoguanidine treatment. By glomerular microdissection and reverse-transcription competitive polymerase chain reaction, we found that glomerular iNOS/β-actin and TGF-β1/β-actin mRNA ratios were reduced 15.1% (P < 0.05) and 61.3% (P < 0.01), respectively, in aminoguanidine-treated mice. Aminoguanidine significantly reduced the glomerular iNOS staining, urinary nitrite production and degree of glomerulosclerosis. In addition, the glomerular volume and mean glomerular cell number were reduced 33.2% (P < 0.01) and 32.8% (P < 0.01), respectively. Likewise, the urinary proteinuria was also significantly reduced by aminoguanidine. These results indicate that administration of aminoguanidine may reduce the progression of glomerulosclerosis in NZB/W F1 mice, possibly through inhibition of glomerular nitric oxide production
    corecore