197 research outputs found

    Redundancy in Genotyping Arrays

    Get PDF
    Despite their unprecedented density, current SNP genotyping arrays contain large amounts of redundancy, with up to 40 oligonucleotide features used to query each SNP. By using publicly available reference genotype data from the International HapMap, we show that 93.6% sensitivity at <5% false positive rate can be obtained with only four probes per SNP, compared with 98.3% with the full data set. Removal of this redundancy will allow for more comprehensive whole-genome association studies with increased SNP density and larger sample sizes

    Global Analysis of Genetic, Epigenetic and Transcriptional Polymorphisms in Arabidopsis thaliana Using Whole Genome Tiling Arrays

    Get PDF
    Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5′CCGG3′ restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5′ and 3′ ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation

    Single Feature Polymorphism Discovery in Rice

    Get PDF
    The discovery of nucleotide diversity captured as single feature polymorphism (SFP) by using the expression array is a high-throughput and effective method in detecting genome-wide polymorphism. The efficacy of such method was tested in rice, and the results presented in the paper indicate high sensitivity in predicting SFP. The sensitivity of polymorphism detection was further demonstrated by the fact that no biasness was observed in detecting SFP with either single or multiple nucleotide polymorphisms. The high density SFP data that can be generated quite effectively by the current method has promise for high resolution genetic mapping studies, as physical location of features are well-defined on rice genome

    High-Resolution Genotyping via Whole Genome Hybridizations to Microarrays Containing Long Oligonucleotide Probes

    Get PDF
    To date, microarray-based genotyping of large, complex plant genomes has been complicated by the need to perform genome complexity reduction to obtain sufficiently strong hybridization signals. Genome complexity reduction techniques are, however, tedious and can introduce unwanted variables into genotyping assays. Here, we report a microarray-based genotyping technology for complex genomes (such as the 2.3 GB maize genome) that does not require genome complexity reduction prior to hybridization. Approximately 200,000 long oligonucleotide probes were identified as being polymorphic between the inbred parents of a mapping population and used to genotype two recombinant inbred lines. While multiple hybridization replicates provided ∼97% accuracy, even a single replicate provided ∼95% accuracy. Genotyping accuracy was further increased to >99% by utilizing information from adjacent probes. This microarray-based method provides a simple, high-density genotyping approach for large, complex genomes

    Bulk Segregant Analysis Using Single Nucleotide Polymorphism Microarrays

    Get PDF
    Bulk segregant analysis (BSA) using microarrays, and extreme array mapping (XAM) have recently been used to rapidly identify genomic regions associated with phenotypes in multiple species. These experiments, however, require the identification of single feature polymorphisms (SFP) between the cross parents for each new combination of genotypes, which raises the cost of experiments. The availability of the genomic polymorphism data in Arabidopsis thaliana, coupled with the efficient designs of Single Nucleotide Polymorphism (SNP) genotyping arrays removes the requirement for SFP detection and lowers the per array cost, thereby lowering the overall cost per experiment. To demonstrate that these approaches would be functional on SNP arrays and determine confidence intervals, we analyzed hybridizations of natural accessions to the Arabidopsis ATSNPTILE array and simulated BSA or XAM given a variety of gene models, populations, and bulk selection parameters. Our results show a striking degree of correlation between the genotyping output of both methods, which suggests that the benefit of SFP genotyping in context of BSA can be had with the cheaper, more efficient SNP arrays. As a final proof of concept, we hybridized the DNA from bulks of an F2 mapping population of a Sulfur and Selenium ionomics mutant to both the Arabidopsis ATTILE1R and ATSNPTILE arrays, which produced almost identical results. We have produced R scripts that prompt the user for the required parameters and perform the BSA analysis using the ATSNPTILE1 array and have provided them as supplemental data files

    Single-feature polymorphism discovery by computing probe affinity shape powers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single-feature polymorphism (SFP) discovery is a rapid and cost-effective approach to identify DNA polymorphisms. However, high false positive rates and/or low sensitivity are prevalent in previously described SFP detection methods. This work presents a new computing method for SFP discovery.</p> <p>Results</p> <p>The probe affinity differences and affinity shape powers formed by the neighboring probes in each probe set were computed into SFP weight scores. This method was validated by known sequence information and was comprehensively compared with previously-reported methods using the same datasets. A web application using this algorithm has been implemented for SFP detection. Using this method, we identified 364 SFPs in a barley near-isogenic line pair carrying either the wild type or the mutant <it>uniculm2 </it>(<it>cul2</it>) allele. Most of the SFP polymorphisms were identified on chromosome 6H in the vicinity of the <it>Cul2 </it>locus.</p> <p>Conclusion</p> <p>This SFP discovery method exhibits better performance in specificity and sensitivity over previously-reported methods. It can be used for other organisms for which GeneChip technology is available. The web-based tool will facilitate SFP discovery. The 364 SFPs discovered in a barley near-isogenic line pair provide a set of genetic markers for fine mapping and future map-based cloning of the <it>Cul2 </it>locus.</p

    High-resolution genetic mapping with pooled sequencing

    Get PDF
    Background: Modern genetics has been transformed by high-throughput sequencing. New experimental designs in model organisms involve analyzing many individuals, pooled and sequenced in groups for increased efficiency. However, the uncertainty from pooling and the challenge of noisy sequencing data demand advanced computational methods. Results: We present MULTIPOOL, a computational method for genetic mapping in model organism crosses that are analyzed by pooled genotyping. Unlike other methods for the analysis of pooled sequence data, we simultaneously consider information from all linked chromosomal markers when estimating the location of a causal variant. Our use of informative sequencing reads is formulated as a discrete dynamic Bayesian network, which we extend with a continuous approximation that allows for rapid inference without a dependence on the pool size. MULTIPOOL generalizes to include biological replicates and case-only or case-control designs for binary and quantitative traits. Conclusions: Our increased information sharing and principled inclusion of relevant error sources improve resolution and accuracy when compared to existing methods, localizing associations to single genes in several cases. MULTIPOOL is freely available at http://cgs.csail.mit.edu/multipool/ webcite.National Science Foundation (U.S.) (Graduate Research Fellowship Grant 0645960

    Root Suberin Forms an Extracellular Barrier That Affects Water Relations and Mineral Nutrition in Arabidopsis

    Get PDF
    Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Using the newly characterized enhanced suberin1 (esb1) mutant, we established a connection in Arabidopsis thaliana between suberin in the root and both water movement through the plant and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates and increased water-use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn, and Zn and increases in the accumulation of Na, S, K, As, Se, and Mo in the shoot. Here, we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn, and Zn occurs in the apoplast
    corecore