1,841 research outputs found
Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1.
Inward rectifying K channels are essential for maintaining resting membrane potential and regulating excitability in many cell types. Previous studies have attributed the rectification properties of strong inward rectifiers such as Kir2.1 to voltage-dependent binding of intracellular polyamines or Mg to the pore (direct open channel block), thereby preventing outward passage of K ions. We have studied interactions between polyamines and the polyamine toxins philanthotoxin and argiotoxin on inward rectification in Kir2.1. We present evidence that high affinity polyamine block is not consistent with direct open channel block, but instead involves polyamines binding to another region of the channel (intrinsic gate) to form a blocking complex that occludes the pore. This interaction defines a novel mechanism of ion channel closure
Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles in cardiac ventricular myocytes. Effects via modification of surface potential.
Modulation of voltage-dependent sodium and potassium currents by charged amphiphiles was investigated in cardiac ventricular myocytes using the patch-clamp technique. Negatively charged sodium dodecylsulfate (SDS) increased amplitude of INa, whereas positively charged dodecyltrimethylammonium (DDTMA) decreased INa. Furthermore, SDS shifted the steady-state activation and inactivation of INa in the negative direction, whereas DDTMA shifted the curves in the opposite direction. These shifts provided an explanation for the changes in current amplitude. Activation and inactivation kinetics of INa were accelerated by SDS but slowed by DDTMA. These changes in both steady-state gating and kinetics of INa are consistent with a decrease of the intramembrane field by SDS and an increase of the field by DDTMA due to an alteration of surface potential after their insertion into the outer monolayer of the sarcolemma. The effect of SDS on the steady-state inactivation of INa was concentration dependent and partially reversed by screening surface charges with increased extracellular [Ca2+]. These amphiphiles also altered the activation of the delayed rectifier K+ current (IK,del), producing a shift in the negative direction by SDS but in the positive direction by DDTMA. These results suggest that the insertion of charged amphiphiles into the cell membrane alters the behavior of voltage-dependent INa and IK,del by changing the surface charge density, and consequently the surface potential and implies, although indirectly, that the lipid surface charges are important to the voltage-dependent gating of these channels
The California-Kepler survey. X. The radius gap as a function of stellar mass, metallicity, and age
In 2017, the California-Kepler Survey (CKS) published its first data release (DR1) of high-resolution optical spectra of 1305 planet hosts. Refined CKS planet radii revealed that small planets are bifurcated into two distinct populations, super-Earths (smaller than 1.5 R⊕) and sub-Neptunes (between 2.0 and 4.0 R⊕), with few planets in between (the "radius gap"). Several theoretical models of the radius gap predict variation with stellar mass, but testing these predictions is challenging with CKS DR1 due to its limited M⋆ range of 0.8–1.4 M⊙. Here we present CKS DR2 with 411 additional spectra and derived properties focusing on stars of 0.5–0.8 M⊙. We found that the radius gap follows Rp ∝ Pm with m = −0.10 ± 0.03, consistent with predictions of X-ray and ultraviolet- and core-powered mass-loss mechanisms. We found no evidence that m varies with M⋆. We observed a correlation between the average sub-Neptune size and M⋆. Over 0.5–1.4 M⊙, the average sub-Neptune grows from 2.1 to 2.6 R⊕, following with α = 0.25 ± 0.03. In contrast, there is no detectable change for super-Earths. These M⋆–Rp trends suggest that protoplanetary disks can efficiently produce cores up to a threshold mass of Mc, which grows linearly with stellar mass according to Mc ≈ 10 M⊕(M⋆/M⊙). There is no significant correlation between sub-Neptune size and stellar metallicity (over −0.5 to +0.5 dex), suggesting a weak relationship between planet envelope opacity and stellar metallicity. Finally, there is no significant variation in sub-Neptune size with stellar age (over 1–10 Gyr), which suggests that the majority of envelope contraction concludes after ∼1 Gyr
Nanoscale atomic waveguides with suspended carbon nanotubes
We propose an experimentally viable setup for the realization of
one-dimensional ultracold atom gases in a nanoscale magnetic waveguide formed
by single doubly-clamped suspended carbon nanotubes. We show that all common
decoherence and atom loss mechanisms are small guaranteeing a stable operation
of the trap. Since the extremely large current densities in carbon nanotubes
are spatially homogeneous, our proposed architecture allows to overcome the
problem of fragmentation of the atom cloud. Adding a second nanowire allows to
create a double-well potential with a moderate tunneling barrier which is
desired for tunneling and interference experiments with the advantage of
tunneling distances being in the nanometer regime.Comment: Replaced with the published version, 7 pages, 3 figure
Development of a multiplex microsphere immunoassay for the detection of antibodies against highly pathogenic viruses in human and animal serum samples
Surveillance of highly pathogenic viruses circulating in both human and animal populations is crucial to unveil endemic infections and potential zoonotic reservoirs. Monitoring the burden of disease by serological assay could be used as an early warning system for imminent outbreaks as an increased seroprevalance often precedes larger outbreaks. However, the multitude of highly pathogenic viruses necessitates the need to identify specific antibodies against several targets from both humans as well as from potential reservoir animals such as bats. In order to address this, we have developed a broadly reactive multiplex microsphere immunoassay (MMIA) for the detection of antibodies against several highly pathogenic viruses from both humans and animals. To this aim, nucleoproteins (NP) of Ebola virus (EBOV), Marburg virus (MARV) and nucleocapsid proteins (NP) of Crimean-Congo haemorrhagic fever virus, Rift Valley fever virus and Dobrava-Belgrade hantavirus were employed in a 5-plex assay for IgG detection. After optimisation, specific binding to each respective NP was shown by testing sera from humans and non-human primates with known infection status. The usefulness of our assay for serosurveillance was shown by determining the immune response against the NP antigens in a panel of 129 human serum samples collected in Guinea between 2011 and 2012 in comparison to a panel of 88 sera from the German blood bank. We found good agreement between our MMIA and commercial or in-house reference methods by ELISA or IIFT with statistically significant higher binding to both EBOV NP and MARV NP coupled microspheres in the Guinea panel. Finally, the MMIA was successfully adapted to detect antibodies from bats that had been inoculated with EBOV- and MARV- virus-like particles, highlighting the versatility of this technique and potentially enabling the monitoring of wildlife as well as human populations with this assay. We were thus able to develop and validate a sensitive and broadly reactive high-throughput serological assay which could be used as a screening tool to detect antibodies against several highly pathogenic viruses
A central mechanism of analgesia in mice and humans lacking the sodium channel NaV1.7
Deletion of SCN9A encoding the voltage-gated sodium channel NaV1.7 in humans leads to profound pain insensitivity and anosmia. Conditional deletion of NaV1.7 in sensory neurons of mice also abolishes pain, suggesting that the locus of analgesia is the nociceptor. Here we demonstrate, using in vivo calcium imaging and extracellular recording, that NaV1.7 knockout mice have essentially normal nociceptor activity. However, synaptic transmission from nociceptor central terminals in the spinal cord is greatly reduced by an opioid-dependent mechanism. Analgesia is also reversed substantially by central but not peripheral application of opioid antagonists. In contrast, the lack of neurotransmitter release from olfactory sensory neurons is opioid independent. Male and female humans with NaV1.7-null mutations show naloxone-reversible analgesia. Thus, inhibition of neurotransmitter release is the principal mechanism of anosmia and analgesia in mouse and human Nav1.7-null mutants
Safe uses of Hill's model: an exact comparison with the Adair-Klotz model
<p>Abstract</p> <p>Background</p> <p>The Hill function and the related Hill model are used frequently to study processes in the living cell. There are very few studies investigating the situations in which the model can be safely used. For example, it has been shown, at the mean field level, that the dose response curve obtained from a Hill model agrees well with the dose response curves obtained from a more complicated Adair-Klotz model, provided that the parameters of the Adair-Klotz model describe strongly cooperative binding. However, it has not been established whether such findings can be extended to other properties and non-mean field (stochastic) versions of the same, or other, models.</p> <p>Results</p> <p>In this work a rather generic quantitative framework for approaching such a problem is suggested. The main idea is to focus on comparing the particle number distribution functions for Hill's and Adair-Klotz's models instead of investigating a particular property (e.g. the dose response curve). The approach is valid for any model that can be mathematically related to the Hill model. The Adair-Klotz model is used to illustrate the technique. One main and two auxiliary similarity measures were introduced to compare the distributions in a quantitative way. Both time dependent and the equilibrium properties of the similarity measures were studied.</p> <p>Conclusions</p> <p>A strongly cooperative Adair-Klotz model can be replaced by a suitable Hill model in such a way that any property computed from the two models, even the one describing stochastic features, is approximately the same. The quantitative analysis showed that boundaries of the regions in the parameter space where the models behave in the same way exhibit a rather rich structure.</p
Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone
Abnormal electrical activity from the boundaries of ischemic cardiac tissue
is recognized as one of the major causes in generation of ischemia-reperfusion
arrhythmias. Here we present theoretical analysis of the waves of electrical
activity that can rise on the boundary of cardiac cell network upon its
recovery from ischaemia-like conditions. The main factors included in our
analysis are macroscopic gradients of the cell-to-cell coupling and cell
excitability and microscopic heterogeneity of individual cells. The interplay
between these factors allows one to explain how spirals form, drift together
with the moving boundary, get transiently pinned to local inhomogeneities, and
finally penetrate into the bulk of the well-coupled tissue where they reach
macroscopic scale. The asymptotic theory of the drift of spiral and scroll
waves based on response functions provides explanation of the drifts involved
in this mechanism, with the exception of effects due to the discreteness of
cardiac tissue. In particular, this asymptotic theory allows an extrapolation
of 2D events into 3D, which has shown that cells within the border zone can
give rise to 3D analogues of spirals, the scroll waves. When and if such scroll
waves escape into a better coupled tissue, they are likely to collapse due to
the positive filament tension. However, our simulations have shown that such
collapse of newly generated scrolls is not inevitable and that under certain
conditions filament tension becomes negative, leading to scroll filaments to
expand and multiply leading to a fibrillation-like state within small areas of
cardiac tissue.Comment: 26 pages, 13 figures, appendix and 2 movies, as accepted to PLoS ONE
2011/08/0
Recommended from our members
A systematic review of frameworks for the interrelationships of mental health evidence and policy in low- and middle-income countries
Background: The interrelationships between research evidence and policy-making are complex. Different theoretical frameworks exist to explain general evidence–policy interactions. One largely unexplored element of these interrelationships is how evidence interrelates with, and influences, policy/political agenda-setting. This review aims to identify the elements and processes of theories, frameworks and models on interrelationships of research evidence and health policy-making, with a focus on actionability and agenda-setting in the context of mental health in low- and middle-income countries (LMICs).
Methods: A systematic review of theories was conducted based on the BeHeMOTh search method, using a tested and refined search strategy. Nine electronic databases and other relevant sources were searched for peer-reviewed and grey literature. Two reviewers screened the abstracts, reviewed full-text articles, extracted data and performed quality assessments. Analysis was based on a thematic analysis. The included papers had to present an actionable theoretical framework/model on evidence and policy interrelationships, such as knowledge translation or evidence-based policy, specifically target the agenda-setting process, focus on mental health, be from LMICs and published in English.
Results: From 236 publications included in the full text analysis, no studies fully complied with our inclusion criteria. Widening the focus by leaving out ‘agenda-setting’, we included ten studies, four of which had unique conceptual frameworks focusing on mental health and LMICs but not agenda-setting. The four analysed frameworks confirmed research gaps from LMICs and mental health, and a lack of focus on agenda-setting. Frameworks and models from other health and policy areas provide interesting conceptual approaches and lessons with regards to agenda-setting.
Conclusion: Our systematic review identified frameworks on evidence and policy interrelations that differ in their elements and processes. No framework fulfilled all inclusion criteria. Four actionable frameworks are applicable to mental health and LMICs, but none specifically target agenda-setting. We have identified agenda-setting as a research theory gap in the context of mental health knowledge translation in LMICs. Frameworks from other health/policy areas could offer lessons on agenda-setting and new approaches for creating policy impact for mental health and to tackle the translational gap in LMICs
- …