17 research outputs found

    Lung adenocarcinoma with peculiar growth to the pulmonary artery and thrombus formation: report of a case

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cases of pulmonary artery masses have only rarely been reported, and the optimal type of the diagnosis and treatment is controversial.</p> <p>Case Presentation</p> <p>An 81-year-old woman was found to have an abnormal shadow on chest X-ray film. Computed tomography showed an irregularly bordered tumor centered in the hilar region extending from segment 6 to the middle lobe of the right lung. Pulmonary angiography showed complete occlusion of the trunk at the periphery proximal to the bifurcation of the posterior ascending branch. Based on bronchoscopic biopsy of the tumor, an adenocarcinoma was diagnosed. Middle and lower lobectomy was performed. Histopathologically, the adenocarcinoma had invaded the tunica intima of the pulmonary artery and also replaced the endothelium in the same region. Although a large thrombus was found at the vessel invasion site of the adenocarcinoma in the pulmonary artery, there were no malignant findings in the thrombus itself.</p> <p>Conclusions</p> <p>This is the first reported case of radical resection of a lung cancer with invasion along the pulmonary artery wherein a benign thrombus had formed. In general, surgery would be the treatment of choice for a pulmonary artery mass.</p

    Soluble tumor necrosis factor receptor 1 and 2 predict outcomes in advanced chronic kidney disease : a prospective cohort study

    Get PDF
    Background : Soluble tumor necrosis factor receptors 1 (sTNFR1) and 2 (sTNFR2) have been associated to progression of renal failure, end stage renal disease and mortality in early stages of chronic kidney disease (CKD), mostly in the context of diabetic nephropathy. The predictive value of these markers in advanced stages of CKD irrespective of the specific causes of kidney disease has not yet been defined. In this study, the relationship between sTNFR1 and sTNFR2 and the risk for adverse cardiovascular events (CVE) and all-cause mortality was investigated in a population with CKD stage 4-5, not yet on dialysis, to minimize the confounding by renal function. Patients and methods : In 131 patients, CKD stage 4-5, sTNFR1, sTNFR2 were analysed for their association to a composite endpoint of all-cause mortality or first non-fatal CVE by univariate and multivariate Cox proportional hazards models. In the multivariate models, age, gender, CRP, eGFR and significant comorbidities were included as covariates. Results : During a median follow-up of 33 months, 40 events (30.5%) occurred of which 29 deaths (22.1%) and 11 (8.4%) first non-fatal CVE. In univariate analysis, the hazard ratios (HR) of sTNFR1 and sTNFR2 for negative outcome were 1.49 (95% confidence interval (CI): 1.28-1.75) and 1.13 (95% CI: 1.06-1.20) respectively. After adjustment for clinical covariables (age, CRP, diabetes and a history of cardiovascular disease) both sTNFRs remained independently associated to outcomes (HR: sTNFR1: 1.51, 95% CI: 1.30-1.77; sTNFR2: 1.13, 95% CI: 1.06-1.20). A subanalysis of the non-diabetic patients in the study population confirmed these findings, especially for sTNFR1. Conclusion : sTNFR1 and sTNFR2 are independently associated to all-cause mortality or an increased risk for cardiovascular events in advanced CKD irrespective of the cause of kidney disease

    Distinct contributions of TNF receptor 1 and 2 to TNF-induced glomerular inflammation in mice

    Get PDF
    TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF
    corecore