23 research outputs found

    Carbon isotope evidence for recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica

    No full text
    Signy Island, maritime Antarctic, lies within the region of the Southern Hemisphere that is currently experiencing the most rapid rates of environmental change. In this study, peat cores up to 2 m in depth from four moss banks on Signy Island were used to reconstruct changes in moss growth and climatic characteristics over the late Holocene. Measurements included radiocarbon dating (to determine peat accumulation rates) and stable carbon isotope composition of moss cellulose (to estimate photosynthetic limitation by CO 2 supply and model CO 2 assimilation rate). For at least one intensively 14C-dated Chorisodontium aciphyllum moss peat bank, the vertical accumulation rate of peat was 3.9 mm yr−1 over the last 30 years. Before the industrial revolution, rates of peat accumulation in all cores were much lower, at around 0.6–1 mm yr−1. Carbon-13 discrimination (Δ), corrected for background and anthropogenic source inputs, was used to develop a predictive model for CO 2 assimilation. Between 1680 and 1900, there had been a gradual increase in Δ, and hence assimilation rate. Since 1800, assimilation has also been stimulated by the changes in atmospheric CO 2 concentration, but a recent decline in Δ (over the past 50–100 years) can perhaps be attributed to documented changes in temperature and/or precipitation. The overall increase in CO 2 assimilation rate (13C proxy) and enhanced C accumulation (14C proxy) are consistent with warmer and wetter conditions currently generating higher growth rates than at any time in the past three millennia, with the decline in Δ perhaps compensated by a longer growing season

    Collembolan water relations and environmental change in the maritime Antarctic

    No full text
    The water status of the collembolan Cryptopygtus antarcticus (Willem) was investigated from April 1984 to December 1987 at Signy Island, maritime Antarctic, by monthly field sampling to determine body water content. Water content, expressed either as the weight of water per unit dry weight or as a proportion of fresh weight, exhibited both a seasonal cycle and an upward trend over the 44-month study, both of which were highly significant. On an annual basis, body water content was at a minimum (1.21 g g−1) in July and maximal (1.98 g g−1) in September, whilst over the entire study water contents increased from 1.3 to 2.0 g g−1 (or 57-66% of fresh weight) calculated from the fitted linear regression line. Field water contents were below those found for this species in culture (2.9-5.9 g g−1). Individual C. antarcticus survived experimental loss of 20% of their body water with a resultant significant rise in haemolymph osmolarity from 285 to 397 mOsm L−1 and there was no evidence of osmoregulation under the experimental conditions of 20 °C and 35% relative humidity. The cuticular permeability (mean conductance) of individual Collembola in dry air increased exponentially with temperature over the range D-45 °C (Q10= 2.0) showing no control of water loss. The physiological response of C. antarcticus suggests that it experiences water stress in its maritime Antarctic habitats with significant seasonal variations of body water content, which correlate with annual cycles of water availability. It is concluded that the significant rise in its mean body water content over the 44-month field study was associated with increased glacial ablation due to higher levels of irradiation and windspeed making available more liquid water. Analyses of climate records for Signy Island from 1947 to 1990 showed that mean monthly air temperature rose by 0.93 °C over this period and by 2.29 °C during the 1980s, both statistically significant increases. Mean monthly windspeeds also increased significantly during 1970–90, and it is suggested that this parameter is the primary climatic driving force behind the increase in glacial ablation during the last two decades. The field water status of species such as C. antarcticus may reflect changes in the patterns of atmospheric circulation, associated with the circumpolar vortex, through increased ozone depletion due to increased tropospheric concentrations of halocarbons

    Fungus-invertebrate interactions in Antarctica

    No full text
    In this chapter, we review the available literature on the associations of invertebrates and fungi across the different environments of Antarctica, the diversity underlined by this type of association and how the Antarctic fungal communities and their ecology can be affected by changes such as those in climate. We describe fungal interactions with individual groups of invertebrates, such as nematodes and insects, in both terrestrial and marine habitats. We conclude the chapter by exploring future possibilities for research regarding the impacts that environmental change and the introduction of non-native species may have in the region

    Environmental factors influencing decomposition rates in two Antarctic moss communities

    No full text
    Rates of disappearance of dead material of Polytrichum alpestre and Chorisodontium aciphyllum from a moss turf community and of Drepanocladus uncinatus, Calliergon sarmentosum and Cephaloziella varians from a moss carpet community, measured using litter bags over 2 years, were 1.5% year-1. Decomposition potential, estimated using loss in tensile strength of cotton strips inserted into the different bryophytes on the two sites, was also low. Ranking the five plant species in order of decomposition potential, from highest to lowest, gave D. uncinatus, C. aciphyllum, C. sarmentosum, P. alpestre and C. varians. The time taken for the tensile strength of the cotton strips at depths of 1–3 and 4–6 cm beneath the surface to decline by 50% varied from 1–2 years under the first two species to 3–4 years beneath the last two species. The main causes of these slow rates were low temperatures, short active season and low pH. Differences in decomposition between species, sites and with depth were related to temperature, nutrient status, water content and anaerobic conditions. Variation in anaerobic conditions beneath D. uncinatus, C. sarmentosum and C. varians in the moss carpet resulted in wide variation of decomposition rate beneath these species and with depth beneath C. varians. The peat in the moss turf was aerobic and experienced higher temperatures, but the average decomposition rate was no higher than in the moss carpet, because the peat was of a poorer quality and had a lower pH
    corecore