12,576 research outputs found
The academic value of internships: benefits across disciplines and student backgrounds
While student benefits from internship experience have been frequently documented in research, the emphasis has been on internship effects on employment and career indicators. This work is concerned with effects on academic outcomes and focuses on the robustness of such effects across academic disciplines as well as for different achievement levels of students, student gender, and ethnicity. We present findings from a longitudinal sample (n > 15,000) that covers an extensive range of subjects and disciplines for large Undergraduate cohorts. Main effects and interactions for student background characteristics were investigated showing stable academic benefits for advantaged and disadvantaged students. Further, using ordinal logistic multi-level modelling, we explored the impact on the probability of attaining a higher degree classification for different student scenarios, thus illustrating the practical significance of these internship effects. Effects are less likely to stem from maturation or self-selection. Findings are therefore discussed against a background of motivational approaches suitable to integrate both direct and indirect paths from internship experience to academic outcomes to career indicators
The genetic algorithm as a discovery engine: Strange circuits and new principles
This paper examines the idea of a genetic or evolutionary algorithm being an inspirational or discovery engine. This is illustrated in the particular context of designing electronic circuits. We argue that by connecting pieces of logic together and testing them to see if they carry out the desired function it may be possible to discover new principles of design, and new algebraic techniques. This is illustrated in the design of binary circuits, particularly arithmetic functions, where we demonstrate that by evolving a hierarchical series of examples, it becomes possible to re-discover the well known ripple-carry principle for building adder circuits of any size. We also examine the much
harder case of multiplication. We show also that extending the work into the field of multiple-valued logic, the genetic algorithm is able to produce fully working circuits that lie outside conventional algebra. In addition we look at the issue of principle extraction from evolved data
A three dimensional model of the photosynthetic membranes of Ectothiorhodospira halochloris
The three dimensional organization of the complete photosynthetic apparatus of the extremely halophilic, bacteriochlorophyll b containing Ectothiorhodospira halochloris has been elaborated by several techniques of electron microscopy. Essentially all thylakoidal sacs are disc shaped and connected to the cytoplasmic membrane by small membraneous ldquobridgesrdquo. In sum, the lumina of all thylakoids (intrathylakoidal space) form one common periplasmic space. Thin sections confirm a paracrystalline arrangement of the photosynthetic complexes in situ. The ontogenic development of the photosynthetic apparatus is discussed based on a structural model derived from serial thin sections
Recommended from our members
Evolution of the digital circuits with variable layouts
We use evolutionary search to design combinational logic circuits which is based on evolving the functionality and connectivity of a rectangular array of logic cells in addition to the layout of this array. The evolutionary process contains two main steps. Initially the genome fitness in given by the percentage of output bits, which are correct. Once 100% functional circuits have been evolved, the number of gates actually used in the circuit is taken into account in the fitness function. This allows us to evolve circuit with 100% functionality and minimise the number of active gates in circuit structure
The homotopy type of the loops on -connected -manifolds
For we compute the homotopy groups of -connected closed
manifolds of dimension . Away from the finite set of primes dividing
the order of the torsion subgroup in homology, the -local homotopy groups of
are determined by the rank of the free Abelian part of the homology.
Moreover, we show that these -local homotopy groups can be expressed as a
direct sum of -local homotopy groups of spheres. The integral homotopy type
of the loop space is also computed and shown to depend only on the rank of the
free Abelian part and the torsion subgroup.Comment: Trends in Algebraic Topology and Related Topics, Trends Math.,
Birkhauser/Springer, 2018. arXiv admin note: text overlap with
arXiv:1510.0519
The magnetic nature of disk accretion onto black holes
Although disk accretion onto compact objects - white dwarfs, neutron stars,
and black holes - is central to much of high energy astrophysics, the
mechanisms which enable this process have remained observationally elusive.
Accretion disks must transfer angular momentum for matter to travel radially
inward onto the compact object. Internal viscosity from magnetic processes and
disk winds can in principle both transfer angular momentum, but hitherto we
lacked evidence that either occurs. Here we report that an X-ray-absorbing wind
discovered in an observation of the stellar-mass black hole binary GRO J1655-40
must be powered by a magnetic process that can also drive accretion through the
disk. Detailed spectral analysis and modeling of the wind shows that it can
only be powered by pressure generated by magnetic viscosity internal to the
disk or magnetocentrifugal forces. This result demonstrates that disk accretion
onto black holes is a fundamentally magnetic process.Comment: 15 pages, 2 color figures, accepted for publication in Nature.
Supplemental materials may be obtained by clicking
http://www.astro.lsa.umich.edu/~jonmm/nature1655.p
A filament of dark matter between two clusters of galaxies
It is a firm prediction of the concordance Cold Dark Matter (CDM)
cosmological model that galaxy clusters live at the intersection of large-scale
structure filaments. The thread-like structure of this "cosmic web" has been
traced by galaxy redshift surveys for decades. More recently the Warm-Hot
Intergalactic Medium (WHIM) residing in low redshift filaments has been
observed in emission and absorption. However, a reliable direct detection of
the underlying Dark Matter skeleton, which should contain more than half of all
matter, remained elusive, as earlier candidates for such detections were either
falsified or suffered from low signal-to-noise ratios and unphysical
misalignements of dark and luminous matter. Here we report the detection of a
dark matter filament connecting the two main components of the Abell 222/223
supercluster system from its weak gravitational lensing signal, both in a
non-parametric mass reconstruction and in parametric model fits. This filament
is coincident with an overdensity of galaxies and diffuse, soft X-ray emission
and contributes mass comparable to that of an additional galaxy cluster to the
total mass of the supercluster. Combined with X-ray observations, we place an
upper limit of 0.09 on the hot gas fraction, the mass of X-ray emitting gas
divided by the total mass, in the filament.Comment: Nature, in pres
- âŠ