152 research outputs found
Highly Scalable Synthesis of MoS2 Thin Films with Precise Thickness Control via Polymer-Assisted Deposition
1112Ysciescopu
Viable stretchable plasmonics based on unidirectional nanoprisms
Well-defined ordered arrays of plasmonic nanostructures were fabricated on stretchable substrates and tunable plasmon-coupling-based sensing properties were comprehensively demonstrated upon extension and contraction. Regular nanoprism patterns consisting of Ag, Au and Ag/Au bilayers were constructed on the stretchable polydimethylsiloxane substrate. The nanoprisms had the same orientation over the entire substrate (3 x 3 cm(2)) via metal deposition on a single-crystal microparticle monolayer assembly. The plasmonic sensor based on the Ag/Au bilayer showed a 6-fold enhanced surface enhanced Raman scattering signal under 20% uniaxial extension, whereas a 3-fold increase was observed upon 6% contraction, compared with the Au nanoprism arrays. The sensory behaviors were corroborated by finite-difference time-domain simulation, demonstrating the tunable electromagnetic field enhancement effect via the localized surface plasmon resonance coupling. The advanced flexible plasmonic-coupling-based devices with tunable and quantifiable performance herein suggested are expected to unlock promising potential in practical bio-sensing, biotechnological applications and optical devices.11Ysciescopu
A New Theranostic System Based on Gold Nanocages and Phase-Change Materials with Unique Features for Photoacoustic Imaging and Controlled Release
This communication reports a new theranostic system with a combination of capabilities to both enhance the contrast of photoacoustic (PA) imaging and control the release of a chemical or biological effector by high-intensity focused ultrasound (HIFU). The fabrication of this system simply involves filling the hollow interiors of gold nanocages with a phase-change material (PCM) such as 1-tetradecanol that has a melting point of 38−39 °C. The PCM can be premixed and thus loaded with a dye, as well as other chemical or biological effectors. When exposed to direct heating or HIFU, the PCM will melt and escape from the interiors of nanocages through small pores on the surface, concurrently releasing the encapsulated molecules into the surrounding medium. We can control the release profile by varying the power of HIFU, the duration of exposure to HIFU, or both
A New Theranostic System Based on Gold Nanocages and Phase-Change Materials with Unique Features for Photoacoustic Imaging and Controlled Release
This communication reports a new theranostic system with a combination of capabilities to both enhance the contrast of photoacoustic (PA) imaging and control the release of a chemical or biological effector by high-intensity focused ultrasound (HIFU). The fabrication of this system simply involves filling the hollow interiors of gold nanocages with a phase-change material (PCM) such as 1-tetradecanol that has a melting point of 38−39 °C. The PCM can be premixed and thus loaded with a dye, as well as other chemical or biological effectors. When exposed to direct heating or HIFU, the PCM will melt and escape from the interiors of nanocages through small pores on the surface, concurrently releasing the encapsulated molecules into the surrounding medium. We can control the release profile by varying the power of HIFU, the duration of exposure to HIFU, or both
Flexible, Highly Efficient All-Polymer Solar Cells
All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymeracceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C 61 -butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared withpolymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.ope
- …