61 research outputs found
Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions
In contrast to classical physics, quantum mechanics divides particles into
two classes-bosons and fermions-whose exchange statistics dictate the dynamics
of systems at a fundamental level. In two dimensions quasi-particles known as
'anyons' exhibit fractional exchange statistics intermediate between these two
classes. The ability to simulate and observe behaviour associated to
fundamentally different quantum particles is important for simulating complex
quantum systems. Here we use the symmetry and quantum correlations of entangled
photons subjected to multiple copies of a quantum process to directly simulate
quantum interference of fermions, bosons and a continuum of fractional
behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2%
between an ideal model and experimental observation. The approach generalises
to an arbitrary number of particles and is independent of the statistics of the
particles used, indicating application with other quantum systems and large
scale application.Comment: 10 pages, 5 figure
On the experimental verification of quantum complexity in linear optics
The first quantum technologies to solve computational problems that are
beyond the capabilities of classical computers are likely to be devices that
exploit characteristics inherent to a particular physical system, to tackle a
bespoke problem suited to those characteristics. Evidence implies that the
detection of ensembles of photons, which have propagated through a linear
optical circuit, is equivalent to sampling from a probability distribution that
is intractable to classical simulation. However, it is probable that the
complexity of this type of sampling problem means that its solution is
classically unverifiable within a feasible number of trials, and the task of
establishing correct operation becomes one of gathering sufficiently convincing
circumstantial evidence. Here, we develop scalable methods to experimentally
establish correct operation for this class of sampling algorithm, which we
implement with two different types of optical circuits for 3, 4, and 5 photons,
on Hilbert spaces of up to 50,000 dimensions. With only a small number of
trials, we establish a confidence >99% that we are not sampling from a uniform
distribution or a classical distribution, and we demonstrate a unitary specific
witness that functions robustly for small amounts of data. Like the algorithmic
operations they endorse, our methods exploit the characteristics native to the
quantum system in question. Here we observe and make an application of a
"bosonic clouding" phenomenon, interesting in its own right, where photons are
found in local groups of modes superposed across two locations. Our broad
approach is likely to be practical for all architectures for quantum
technologies where formal verification methods for quantum algorithms are
either intractable or unknown.Comment: Comments welcom
On-chip manipulation of single photons from a diamond defect
Operating reconfigurable quantum circuits with single photon sources is a key goal of photonic quantum information science and technology. We use an integrated waveguide device containing directional couplers and a reconfigurable thermal phase controller to manipulate single photons emitted from a chromium related color center in diamond. Observation of both a wavelike interference pattern and particlelike sub-Poissionian autocorrelation functions demonstrates coherent manipulation of single photons emitted from the chromium related center and verifies wave particle duality. © 2013 American Physical Society
Calculating Unknown Eigenvalues with a Quantum Algorithm
Quantum algorithms are able to solve particular problems exponentially faster
than conventional algorithms, when implemented on a quantum computer. However,
all demonstrations to date have required already knowing the answer to
construct the algorithm. We have implemented the complete quantum phase
estimation algorithm for a single qubit unitary in which the answer is
calculated by the algorithm. We use a new approach to implementing the
controlled-unitary operations that lie at the heart of the majority of quantum
algorithms that is more efficient and does not require the eigenvalues of the
unitary to be known. These results point the way to efficient quantum
simulations and quantum metrology applications in the near term, and to
factoring large numbers in the longer term. This approach is architecture
independent and thus can be used in other physical implementations
Multimode quantum interference of photons in multiport integrated devices
We report the first demonstration of quantum interference in multimode
interference (MMI) devices and a new complete characterization technique that
can be applied to any photonic device that removes the need for phase stable
measurements. MMI devices provide a compact and robust realization of NxM
optical circuits, which will dramatically reduce the complexity and increase
the functionality of future generations of quantum photonic circuits
Quantum interferometry with three-dimensional geometry
Quantum interferometry uses quantum resources to improve phase estimation
with respect to classical methods. Here we propose and theoretically
investigate a new quantum interferometric scheme based on three-dimensional
waveguide devices. These can be implemented by femtosecond laser waveguide
writing, recently adopted for quantum applications. In particular, multiarm
interferometers include "tritter" and "quarter" as basic elements,
corresponding to the generalization of a beam splitter to a 3- and 4-port
splitter, respectively. By injecting Fock states in the input ports of such
interferometers, fringe patterns characterized by nonclassical visibilities are
expected. This enables outperforming the quantum Fisher information obtained
with classical fields in phase estimation. We also discuss the possibility of
achieving the simultaneous estimation of more than one optical phase. This
approach is expected to open new perspectives to quantum enhanced sensing and
metrology performed in integrated photonic.Comment: 7 pages (+4 Supplementary Information), 5 figure
Entanglement-enhanced probing of a delicate material system
Quantum metrology uses entanglement and other quantum effects to improve the
sensitivity of demanding measurements. Probing of delicate systems demands high
sensitivity from limited probe energy and has motivated the field's key
benchmark-the standard quantum limit. Here we report the first
entanglement-enhanced measurement of a delicate material system. We
non-destructively probe an atomic spin ensemble by means of near-resonant
Faraday rotation, a measurement that is limited by probe-induced scattering in
quantum-memory and spin-squeezing applications. We use narrowband,
atom-resonant NOON states to beat the standard quantum limit of sensitivity by
more than five standard deviations, both on a per-photon and per-damage basis.
This demonstrates quantum enhancement with fully realistic loss and noise,
including variable-loss effects. The experiment opens the way to ultra-gentle
probing of single atoms, single molecules, quantum gases and living cells.Comment: 7 pages, 8 figures; Nature Photonics, advance online publication, 16
December 201
Integrated photonic quantum gates for polarization qubits
Integrated photonic circuits have a strong potential to perform quantum
information processing. Indeed, the ability to manipulate quantum states of
light by integrated devices may open new perspectives both for fundamental
tests of quantum mechanics and for novel technological applications. However,
the technology for handling polarization encoded qubits, the most commonly
adopted approach, is still missing in quantum optical circuits. Here we
demonstrate the first integrated photonic Controlled-NOT (CNOT) gate for
polarization encoded qubits. This result has been enabled by the integration,
based on femtosecond laser waveguide writing, of partially polarizing beam
splitters on a glass chip. We characterize the logical truth table of the
quantum gate demonstrating its high fidelity to the expected one. In addition,
we show the ability of this gate to transform separable states into entangled
ones and vice versa. Finally, the full accessibility of our device is exploited
to carry out a complete characterization of the CNOT gate through a quantum
process tomography.Comment: 6 pages, 4 figure
Observation of eight-photon entanglement
Using ultra-bright sources of pure-state entangled photons from parametric
down conversion, an eight-photon interferometer and post-selection detection,
we demonstrate the ability to experimentally manipulate eight individual
photons and report the creation of an eight-photon Schr\"odinger cat state with
an observed fidelity of .Comment: 6 pages, 4 figure
Experimental measurement-based quantum computing beyond the cluster-state model
The paradigm of measurement-based quantum computation opens new experimental
avenues to realize a quantum computer and deepens our understanding of quantum
physics. Measurement-based quantum computation starts from a highly entangled
universal resource state. For years, clusters states have been the only known
universal resources. Surprisingly, a novel framework namely quantum computation
in correlation space has opened new routes to implement measurement-based
quantum computation based on quantum states possessing entanglement properties
different from cluster states. Here we report an experimental demonstration of
every building block of such a model. With a four-qubit and a six-qubit state
as distinct from cluster states, we have realized a universal set of
single-qubit rotations, two-qubit entangling gates and further Deutsch's
algorithm. Besides being of fundamental interest, our experiment proves
in-principle the feasibility of universal measurement-based quantum computation
without using cluster states, which represents a new approach towards the
realization of a quantum computer.Comment: 26 pages, final version, comments welcom
- …