21 research outputs found

    Reduction in primary production followed by rapid recovery of plant biomass in response to repeated mid-season droughts in a semiarid shrubland

    Get PDF
    The frequency and severity of extreme weather events, including droughts, are expected to increase due to the climate change. Climate manipulation field experiments are widely used tools to study the response of key parameters like primary production to the treatments. Our study aimed to detect the effect of drought on the aboveground biomass and primary production both during the treatments as well as during the whole growing seasons in semiarid vegetation. We estimated aboveground green biomass of vascular plants in a Pannonian sand forest-steppe ecosystem in Hungary. We applied non-destructive field remote sensing method in control and drought treatments. Drought treatment was carried out by precipitation exclusion in May and June, and was repeated in each year from 2002. We measured NDVI before the drought treatment, right after the treatment, and at the end of the summer in 2011 and 2013. We found that the yearly biomass peaks, measured in control plots after the treatment periods, were decreased or absent in drought treatment plots, and consequently, the aboveground net primary production was smaller than in the control plots. At the same time, we did not find general drought effects on all biomass data. The studied ecosystem proved resilient, as the biomass in the drought-treated plots recovered by the next drought treatment. We conclude that the effect of drought treatment can be overestimated with only one measurement at the time of the peak biomass, while multiple within-year measurements better describe the response of biomass

    Higher thermal acclimation potential of respiration but not photosynthesis in two alpine Picea taxa in contrast to two lowland congeners

    Get PDF
    The members of the genus Picea form a dominant component in many alpine and boreal forests which are the major sink for atmospheric CO2. However, little is known about the growth response and acclimation of CO2 exchange characteristics to high temperature stress in Picea taxa from different altitudes. Gas exchange parameters and growth characteristics were recorded from four year old seedlings of two alpine (Picea likiangensis vars. rubescens and linzhiensis) and two lowland (P. koraiensis and P. meyeri) taxa. Seedlings were grown at moderate (25°C/15°C) and high (35°C/25°C) day/night temperatures, for four months. The approximated biomass increment (ΔD2H) for all taxa decreased under high temperature stress, associated with decreased photosynthesis and increased respiration. However, the two alpine taxa exhibited lower photosynthetic acclimation and higher respiratory acclimation than either lowland taxon. Moreover, higher leaf dry mass per unit area (LMA) and leaf nitrogen content per unit area (Narea), and a smaller change in the nitrogen use efficiency of photosynthesis (PNUE) for lowland taxa indicated that these maintained higher homeostasis of photosynthesis than alpine taxa. The higher respiration rates produced more energy for repair and maintenance biomass, especially for higher photosynthetic activity for lowland taxa, which causes lower respiratory acclimation. Thus, the changes of ΔD2H for alpine spruces were larger than that for lowland spruces. These results indicate that long term heat stress negatively impact on the growth of Picea seedlings, and alpine taxa are more affected than low altitude ones by high temperature stress. Hence the altitude ranges of Picea taxa should be taken into account when predicting changes to carbon fluxes in warmer conditions

    Carbon isotopic signature of CO2 emitted by plant compartments and soil in two temperate deciduous forests

    Full text link
    • Context: The carbon isotope composition of the CO2 efflux (δ13CE) from ecosystem components is widely used to investigate carbon cycles and budgets at different ecosystem scales. δ13CE, was considered constant but is now known to vary along seasons. The seasonal variations have rarely been compared among different ecosystem components. • Aims: We aimed to characterise simultaneously the seasonal dynamics of δ13CE in different compartments of two temperate broadleaved forest ecosystems. • Methods: Using manual chambers and isotope ratio mass spectrometry, we recorded simultaneously δ13CE and δ13C of organic matter in sun leaves, current-year twigs, trunk bases and soil in an oak and a beech forest during 1 year. • Results: In the two forests, δ13CE displayed a larger variability in the tree components than in the soil. During the leafy period, a pronounced vertical zonation of δ13CE was observed between the top (sun leaves and twigs with higher values) and bottom (trunk and soil with lower values) of the ecosystem. No correlation was found between δ 13CE and δ13C of organic matter. Causes for these seasonal variations and the vertical zonation in isotope signature are discussed. • Conclusion: Our study shows clear differences in values as well as seasonal dynamics of δ13CE among different components in the two ecosystems. The temporal and local variation of δ13CE cannot be inferred from organic matter signature or CO2 emission rates. © 2012 INRA and Springer-Verlag France
    corecore