139 research outputs found

    Exact diagonalization Studies of Two-dimensional Frustrated Antiferromagnet Models

    Full text link
    We describe the four kinds of behavior found in two-dimensional isotropic quantum antiferromagnets. Two of them display long range order at T=0: the N\'eel state and the Valence Bond Crystal. The last two are Spin-Liquids. Properties of these different states are shortly described and open questions are underlined.Comment: 7 pages; invited talk at "HFM 2000" (Waterloo, June 2000); submitted to Can. J. Phy

    An investigation of the quantum J1−J2−J3J_1-J_2-J_3 model on the honeycomb lattice

    Full text link
    We have investigated the quantum J1−J2−J3J_1-J_2-J_3 model on the honeycomb lattice with exact diagonalizations and linear spin-wave calculations for selected values of J2/J1J_{2}/J_{1}, J3/J1J_{3}/J_{1} and antiferromagnetic (J1>0J_{1}>0) or ferromagnetic (J1<0J_{1}<0) nearest neighbor interactions. We found a variety of quantum effects: "order by disorder" selection of a N{\'e}el ordered ground-state, good candidates for non-classical ground-states with dimer long range order or spin-liquid like. The purely antiferromagnetic Heisenberg model is confirmed to be N{\'e}el ordered. Comparing these results with those observed on the square and triangular lattices, we enumerate some conjectures on the nature of the quantum phases in the isotropic models.Comment: 14 pages, 22 Postscript figures, uses svjour.cls and svepj.clo, submitted to European Physical Journal B: condensed matter physi

    Field-induced gap in ordered Heisenberg antiferromagnets

    Full text link
    Heisenberg antiferromagnets in a strong uniform magnetic field HH are expected to exhibit a gapless phase with a global O(2) symmetry. In many real magnets, a small energy gap is induced by additional interactions that can be viewed as a staggered transverse magnetic field h=cHh = c H, where cc is a small proportionality constant. We study the effects of such a perturbation, particularly for magnets with long-range order, by using several complimentary approaches: numerical diagonalizations of a model with long-range interactions, classical equations of motion, and scaling arguments. In an ordered state at zero temperature, the energy gap at first grows as (cH)1/2(cH)^{1/2} and then may dip to a smaller value, of order (cH)2/3(cH)^{2/3}, at the quantum critical point separating the ``gapless'' phase from the gapped state with saturated magnetization. In one spatial dimension, the latter exponent changes to 4/5.Comment: 6 pages, 5 figure

    Field theories of paramagnetic Mott insulators

    Full text link
    This is a summary of a central argument in recent review articles by the author (cond-mat/0109419, cond-mat/0211005, and cond-mat/0211027). An effective field theory is derived for the low energy spin singlet excitations in a paramagnetic Mott insulator with collinear spin correlations.Comment: 12 pages, 4 figures, Proceedings of the International Conference on Theoretical Physics, Paris, UNESCO, July 200

    Frustrated three-leg spin tubes: from spin 1/2 with chirality to spin 3/2

    Full text link
    Motivated by the recent discovery of the spin tube [(CuCl2_2tachH)3_3Cl]Cl2_2, we investigate the properties of a frustrated three-leg spin tube with antiferromagnetic intra-ring and inter-ring couplings. We pay special attention to the evolution of the properties from weak to strong inter-ring coupling and show on the basis of extensive density matrix renormalization group and exact diagonalization calculations that the system undergoes a first-order phase transition between a dimerized gapped phase at weak coupling that can be described by the usual spin-chirality model and a gapless critical phase at strong coupling that can be described by an effective spin-3/2 model. We also show that there is a magnetization plateau at 1/3 in the gapped phase and slightly beyond. The implications for [(CuCl2_2tachH)3_3Cl]Cl2_2 are discussed, with the conclusion that this system behaves essentially as a spin-3/2 chain.Comment: 8 pages, 9 figures, revised versio

    Field Induced Staggered Magnetization and Magnetic Ordering in Cu2(C5H12N2)2Cl4Cu_2 (C_5 H_{12} N_2)_2 Cl_4

    Full text link
    We present a 2^2D NMR investigation of the gapped spin-1/2 compound Cu2(C5H12N2)2Cl4Cu_2 (C_5 H_{12} N_2)_2 Cl_4. Our measurements reveal the presence of a magnetic field induced transverse staggered magnetization (TSM) which persists well below and above the field-induced 3D long-range magnetically ordered (FIMO) phase. The symmetry of this TSM is different from that of the TSM induced by the order parameter of the FIMO phase. Its origin, field dependence and symmetry can be explained by an intra-dimer Dzyaloshinskii-Moriya interaction, as shown by DMRG calculations on a spin-1/2 ladder. This leads us to predict that the transition into the FIMO phase is not in the BEC universality class.Comment: 4 page

    Quantum spin liquids: a large-S route

    Full text link
    This paper explores the large-S route to quantum disorder in the Heisenberg antiferromagnet on the pyrochlore lattice and its homologues in lower dimensions. It is shown that zero-point fluctuations of spins shape up a valence-bond solid at low temperatures for one two-dimensional lattice and a liquid with very short-range valence-bond correlations for another. A one-dimensional model demonstrates potential significance of quantum interference effects (as in Haldane's gap): the quantum melting of a valence-bond order yields different valence-bond liquids for integer and half-integer values of S.Comment: Proceedings of Highly Frustrated Magnetism 2003 (Grenoble), 6 LaTeX page

    Uniform and staggered magnetizations induced by Dzyaloshinskii-Moriya interactions in isolated and coupled spin 1/2 dimers in a magnetic field

    Full text link
    We investigate the interplay of Dzyaloshinskii-Moriya interactions and an external field in spin 1/2 dimers. For isolated dimers and at low field, we derive simple expressions for the staggered and uniform magnetizations which show that the orientation of the uniform magnetization can deviate significantly from that of the external field. In fact, in the limit where the D{\bf D} vector of the Dzyaloshinskii-Moriya interaction is parallel to the external field, the uniform magnetization actually becomes {\it perpendicular} to the field. For larger fields, we show that the staggered magnetization of an isolated dimer has a maximum close to one-half the polarization, with a large maximal value of 0.35gμB0.35 g\mu_B in the limit of very small Dzyaloshinskii-Moriya interaction. We investigate the effect of inter-dimer coupling in the context of ladders with Density Matrix Renormalization Group (DMRG) calculations and show that, as long as the values of the Dzyaloshinskii-Moriya and of the exchange interaction are compatible with respect to the development of a staggered magnetization, the simple picture that emerges for isolated dimers is also valid for weakly coupled dimers with minor modifications. The results are compared with torque measurements on Cu2_{2}(C5_{5}H12_{12}N2_{2})2_{2}Cl4_{4}.Comment: 8 pages, 9 figure
    • …
    corecore