785 research outputs found

    Correlated photon dynamics in dissipative Rydberg media

    Full text link
    Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of non-perturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.Comment: Final version. 6 pages, 4 figures (+ Supplemental Material; 7 pages, 3 figures

    Osmotic Water Transport with Glucose in GLUT2 and SGLT

    Get PDF
    Carrier-mediated water cotransport is currently a favored explanation for water movement against an osmotic gradient. The vestibule within the central pore of Na+-dependent cotransporters or GLUT2 provides the necessary precondition for an osmotic mechanism, explaining this phenomenon without carriers. Simulating equilibrative glucose inflow via the narrow external orifice of GLUT2 raises vestibular tonicity relative to the external solution. Vestibular hypertonicity causes osmotic water inflow, which raises vestibular hydrostatic pressure and forces water, salt, and glucose into the outer cytosolic layer via its wide endofacial exit. Glucose uptake via GLUT2 also raises oocyte tonicity. Glucose exit from preloaded cells depletes the vestibule of glucose, making it hypotonic and thereby inducing water efflux. Inhibiting glucose exit with phloretin reestablishes vestibular hypertonicity, as it reequilibrates with the cytosolic glucose and net water inflow recommences. Simulated Na+-glucose cotransport demonstrates that active glucose accumulation within the vestibule generates water flows simultaneously with the onset of glucose flow and before any flow external to the transporter caused by hypertonicity in the outer cytosolic layers. The molar ratio of water/glucose flow is seen now to relate to the ratio of hydraulic and glucose permeability rather than to water storage capacity of putative water carriers

    Role of carbon dioxide and ion transport in the formation of sub-embryonic fluid by the blastoderm of the Japanese quail

    Get PDF
    1. The explanted blastoderm of the Japanese quail was used to explore the role of ions and carbon dioxide in determining the rate of sub-embryonic fluid (SEF) production between 54 and 72 h of incubation. 2. Amiloride, an inhibitor of Na+/H+ exchange, at concentrations of 10-3 to 10-6 M substantially decreased the rate of SEF production when added to the albumen culture medium. N-ethylmaleimide, an inhibitor of V type H+ ATPase, also decreased this rate but only to a small extent at the highest dose applied, 10-3 M. Both inhibitors had no effect on SEF production when added to the SEF. 3. The inhibitors of cellular bicarbonate and chloride exchange, 4-acetamido-4-'isothiocyano-2, 2-'disulphonic acid (SITS) and 4,4'diisothiocyanostilbene-2,2-'disulphonic acid (DIDS), had no effect upon SEF production. 4. Ouabain, an inhibitor of Na+/K+ ATPase, decreased SEF production substantially at all concentrations added to the SEF (10-3 to 10-6 M). Three sulphonamide inhibitors of carbonic anhydrase, acetazolamide, ethoxzolamide and benzolamide, decreased SEF production when added to the SEF at concentrations of 10-3 to 10-6 M. Benzolamide was by far the most potent. Neither ouabain nor the sulphonamides altered SEF production when added to the albumen culture medium. 5. Using a cobalt precipitation method, carbonic anhydrase activity was localised to the endodermal cells of the area vasculosa. The carbonic anhydrase activity was primarily associated with the lateral plasma membranes, which together with the potent inhibitory effect of benzolamide, suggests the carbonic anhydrase of these cells is the membrane-associated form, CA IV. 6. The changes in SEF composition produced by inhibitors were consistent with the production of SEF by local osmotic gradients. 7. It is concluded that a Na+/K+ ATPase is located on the basolateral membranes of the endodermal cells of the area vasculosa , and that a sodium ion/hydrogen ion exchanger is located on their apical surfaces. Protons for this exchanger would be provided by the hydration of CO2 catalysed by the membrane-associated carbonic anhydrase. Furthermore, it is proposed that the prime function of the endodermal cells of the area vasculosa is the production of SEF

    Gill Function in an Elasmobranch

    Get PDF
    Highly efficient oxygen uptake in elasmobranchs, as indicated by frequent excess of PaO2 over PEO2 has previously been ascribed to the operation of multicapillary rather than counter-current gas exchange by the gills. Analysis of models shows that, at maximum efficiency, a multicapillary system cannot account for values of PaO2 greater than (PIO2+PEO2)/2. In Port Jackson sharks Heterodontus portusjacksoni) PaO2 commonly exceeds (PIO2+PEO2)/2, which indicates the operation of a functional counter-current at the respiratory surface. The anatomical basis of this counter-current is provided by the demonstration that a continuous flow of water passes between the secondary lamellae into septal canals and thence via the parabranchial cavities to the exterior
    • …
    corecore