4,090 research outputs found

    Cross Section Measurements with Monoenergetic Muon Neutrinos

    Full text link
    The monoenergetic 236 MeV muon neutrino from charged kaon decay-at-rest (K+→μ+νμK^+ \rightarrow \mu^+ \nu_\mu) can be used to produce a novel set of cross section measurements. Applicable for short- and long-baseline accelerator-based neutrino oscillation experiments, among others, such measurements would provide a "standard candle" for the energy reconstruction and interaction kinematics relevant for charged current neutrino events near this energy. This neutrino can also be exercised as a unique known-energy, purely weak interacting probe of the nucleus. A number of experiments are set to come online in the next few years that will be able to collect and characterize thousands of these events.Comment: 8 pages, 4 figures; accepted for publication in Phys. Rev. D.; typos fixed and references update

    A Sterile Neutrino Search with Kaon Decay-at-rest

    Full text link
    Monoenergetic muon neutrinos (235.5 MeV) from positive kaon decay-at-rest are considered as a source for an electron neutrino appearance search. In combination with a liquid argon time projection chamber based detector, such a source could provide discovery-level sensitivity to the neutrino oscillation parameter space indicative of a sterile neutrino. Current and future intense >3 GeV kinetic energy proton facilities around the world can be employed for this experimental concept.Comment: 6 pages, 6 figure

    Coherent Neutrino Scattering in Dark Matter Detectors

    Full text link
    Coherent elastic neutrino- and WIMP-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next generation ton-scale dark matter detector could discover neutrino-nucleus coherent scattering, a precisely-predicted Standard Model process. A high intensity pion- and muon- decay-at-rest neutrino source recently proposed for oscillation physics at underground laboratories would provide the neutrinos for these measurements. In this paper, we calculate raw rates for various target materials commonly used in dark matter detectors and show that discovery of this interaction is possible with a 2 tonâ‹…\cdotyear GEODM exposure in an optimistic energy threshold and efficiency scenario. We also study the effects of the neutrino source on WIMP sensitivity and discuss the modulated neutrino signal as a sensitivity/consistency check between different dark matter experiments at DUSEL. Furthermore, we consider the possibility of coherent neutrino physics with a GEODM module placed within tens of meters of the neutrino source.Comment: 8 pages, 4 figure

    Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements

    Get PDF
    This paper reviews short baseline oscillation experiments as interpreted within the context of one, two, and three sterile neutrino models associated with additional neutrino mass states in the ~1 eV range. Appearance and disappearance signals and limits are considered. We show that fitting short baseline data sets to a (3+3) model, defined by three active and three sterile neutrinos, results in an overall goodness of fit of 67%, and a compatibility of 90% among all data sets -- to be compared to the compatibility of 0.043% and 13% for a (3+1) and a (3+2) model, respectively. While the (3+3) fit yields the highest quality overall, it still finds inconsistencies with the MiniBooNE appearance data sets; in particular, the global fit fails to account for the observed MiniBooNE low-energy excess. Given the overall improvement, we recommend using the results of (3+2) and (3+3) fits, rather than (3+1) fits, for future neutrino oscillation phenomenology. These results motivate the pursuit of further short baseline experiments, such as those reviewed in this paper.Comment: Submitted to Advances in High Energy Physics Special Issue on Neutrino Physic

    Testing Lorentz Symmetry with the Double Chooz Experiment

    Get PDF
    4 pages, 1 figure, presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 20134 pages, 1 figure, presented at the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 17-21, 2013The Double Chooz reactor-based oscillation experiment searches for an electron antineutrino disappearance signal to investigate the neutrino mass matrix mixing angle theta 13. Double Chooz's reported evidence for this disappearance is generally interpreted as mass-driven mixing through this parameter. However, the electron antineutrino candidates collected by the experiment can also be used to search for a signature of the violation of Lorentz invariance. We study the sidereal time dependence of the antineutrino signal rate and probe Lorentz violation within the Standard-Model Extension (SME) framework. We find that the data prefer the sidereal time independent solution, and a number of limits are applied to the relevant SME coefficients, including the first constraints on those associated with Lorentz violation in the e-tau mixing sector
    • …
    corecore