40,307 research outputs found
Telluric correction in the near-infrared: Standard star or synthetic transmission?
Context. The atmospheric absorption of the Earth is an important limiting
factor for ground-based spectroscopic observations and the near-infrared and
infrared regions are the most affected. Several software packages that produce
a synthetic atmospheric transmission spectrum have been developed to correct
for the telluric absorption; these are Molecfit, TelFit, and TAPAS. Aims. Our
goal is to compare the correction achieved using these three telluric
correction packages and the division by a telluric standard star. We want to
evaluate the best method to correct near-infrared high-resolution spectra as
well as the limitations of each software package and methodology. Methods. We
applied the telluric correction methods to CRIRES archival data taken in the J
and K bands. We explored how the achieved correction level varies depending on
the atmospheric T-P profile used in the modelling, the depth of the atmospheric
lines, and the molecules creating the absorption. Results. We found that the
Molecfit and TelFit corrections lead to smaller residuals for the water lines.
The standard star method corrects best the oxygen lines. The Molecfit package
and the standard star method corrections result in global offsets always below
0.5% for all lines; the offset is similar with TelFit and TAPAS for the H2O
lines and around 1% for the O2 lines. All methods and software packages result
in a scatter between 3% and 7% inside the telluric lines. The use of a tailored
atmospheric profile for the observatory leads to a scatter two times smaller,
and the correction level improves with lower values of precipitable water
vapour. Conclusions. The synthetic transmission methods lead to an improved
correction compared to the standard star method for the water lines in the J
band with no loss of telescope time, but the oxygen lines were better corrected
by the standard star method.Comment: 18 pages, 13 figures, Accepted to A&
Dark Matter directional detection: comparison of the track direction determination
Several directional techniques have been proposed for a directional detection
of Dark matter, among others anisotropic crystal detectors, nuclear emulsion
plates, and low-pressure gaseous TPCs. The key point is to get access to the
initial direction of the nucleus recoiling due to the elastic scattering by a
WIMP. In this article, we aim at estimating, for each method, how the
information of the recoil track initial direction is preserved in different
detector materials. We use the SRIM simulation code to emulate the motion of
the first recoiling nucleus in each material. We propose the use of a new
observable, D, to quantify the preservation of the initial direction of the
recoiling nucleus in the detector. We show that in an emulsion mix and an
anisotropic crystal, the initial direction is lost very early, while in a
typical TPC gas mix, the direction is well preserved.Comment: 9 pages, 5 figure
Further constraints on the optical transmission spectrum of HAT-P-1b
We report on novel observations of HAT-P-1 aimed at constraining the optical
transmission spectrum of the atmosphere of its transiting Hot-Jupiter
exoplanet. Ground-based differential spectrophotometry was performed over two
transit windows using the DOLORES spectrograph at the Telescopio Nazionale
Galileo (TNG). Our measurements imply an average planet to star radius ratio
equal to =(0.11590.0005). This result is consistent
with the value obtained from recent near infrared measurements of this object
but differs from previously reported optical measurements being lower by around
4.4 exoplanet scale heights. Analyzing the data over 5 different spectral bins
600\AA wide we observed a single peaked spectrum (3.7 level)
with a blue cut-off corresponding to the blue edge of the broad absorption wing
of sodium and an increased absorption in the region in between 6180-7400\AA. We
also infer that the width of the broad absorption wings due to alkali metals is
likely narrower than the one implied by solar abundance clear atmospheric
models. We interpret the result as evidence that HAT-P-1b has a partially clear
atmosphere at optical wavelengths with a more modest contribution from an
optical absorber than previously reported.Comment: Accepted by Ap
A Conserved Bach Current
The Bach tensor and a vector which generates conformal symmetries allow a
conserved four-current to be defined. The Bach four-current gives rise to a
quasilocal two-surface expression for power per luminosity distance in the
Vaidya exterior of collapsing fluid interiors. This is interpreted in terms of
entropy generation.Comment: to appear in Class. Quantum Gra
Impact of micro-telluric lines on precise radial velocities and its correction
Context: In the near future, new instruments such as ESPRESSO will arrive,
allowing us to reach a precision in radial-velocity measurements on the order
of 10 cm/s. At this level of precision, several noise sources that until now
have been outweighed by photon noise will start to contribute significantly to
the error budget. The telluric lines that are not neglected by the masks for
the radial velocity computation, here called micro-telluric lines, are one such
noise source. Aims: In this work we investigate the impact of micro-telluric
lines in the radial velocities calculations. We also investigate how to correct
the effect of these atmospheric lines on radial velocities. Methods: The work
presented here follows two parallel lines. First, we calculated the impact of
the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum
by synthetic atmospheric spectra and evaluated the effect created by the
presence of the telluric lines. Then, we divided HARPS spectra by synthetic
atmospheric spectra to correct for its presence on real data and calculated the
radial velocity on the corrected spectra. When doing so, one considers two
atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS.
Results: We find that the micro-telluric lines can induce an impact on the
radial velocities calculation that can already be close to the current
precision achieved with HARPS, and so its effect should not be neglected,
especially for future instruments such as ESPRESSO. Moreover, we find that the
micro-telluric lines' impact depends on factors, such as the radial velocity of
the star, airmass, relative humidity, and the barycentric Earth radial velocity
projected along the line of sight at the time of the observation.Comment: Accepted in A&
Reversible quantum teleportation in an optical lattice
We propose a protocol, based on entanglement procedures recently suggested by
[D. Jaksch et al., Phys. Rev. Lett. 82, 1975 (1999)], which allows the
teleportation of an unknown state of a neutral atom in an optical lattice to
another atom in another site of the lattice, without any irreversible
detection.Comment: 8 pages, 3 figure
The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys
We investigate in this paper the astrophysical false-positive configuration
in exoplanet-transit surveys that involves eclipsing binaries and giant planets
which present only a secondary eclipse, as seen from the Earth. To test how an
eclipsing binary configuration can mimic a planetary transit, we generate
synthetic light curve of three examples of secondary-only eclipsing binary
systems that we fit with a circular planetary model. Then, to evaluate its
occurrence we model a population of binaries in double and triple system based
on binary statistics and occurrence. We find that 0.061% +/- 0.017% of
main-sequence binary stars are secondary-only eclipsing binaries mimicking a
planetary transit candidate down to the size of the Earth. We then evaluate the
occurrence that an occulting-only giant planet can mimic an Earth-like planet
or even smaller planet. We find that 0.009% +/- 0.002% of stars harbor a giant
planet that present only the secondary transit. Occulting-only giant planets
mimic planets smaller than the Earth that are in the scope of space missions
like Kepler and PLATO. We estimate that up to 43.1 +/- 5.6 Kepler Objects of
Interest can be mimicked by this new configuration of false positives,
re-evaluating the global false-positive rate of the Kepler mission from 9.4%
+/- 0.9% to 11.3% +/- 1.1%. We note however that this new false-positive
scenario occurs at relatively long orbital period compared with the median
period of Kepler candidates.Comment: 9 pages, 4 figures, accepted for publication in A&
- …