570 research outputs found
Very weak electron-phonon coupling and strong strain coupling in manganites
The coupling of the manganite stripe phase to the lattice and to strain has
been investigated via transmission electron microscopy studies of
polycrystalline and thin film manganites. In polycrystalline \PCMOfiftwo a
lockin to in a sample with has been observed for the first
time. Such a lockin has been predicted as a key part of the Landau CDW theory
of the stripe phase. Thus it is possible to constrain the size of the
electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of
the electron-electron coupling term. In the thin film samples, films of the
same thickness grown on two different substrates exhibited different
wavevectors. The different strains present in the films on the two substrates
can be related to the wavevector observed via Landau theory. It is demonstrated
that the the elastic term which favours an incommensurate modulation has a
similar size to the coupling between the strain and the wavevector, meaning
that the coupling of strain to the superlattice is unexpectedly strong.Comment: 6 pages, 7 figure
Charge order in Fe2OBO3: An LSDA+U study
Charge ordering in the low-temperature monoclinic structure of iron oxoborate
(Fe2OBO3) is investigated using the local spin density approximation (LSDA)+U
method. While the difference between t_{2g} minority occupancies of Fe^{2+} and
Fe^{3+} cations is large and gives direct evidence for charge ordering, the
static "screening" is so effective that the total 3d charge separation is
rather small. The occupied Fe^{2+} and Fe^{3+} cations are ordered alternately
within the chain which is infinite along the a-direction. The charge order
obtained by LSDA+U is consistent with observed enlargement of the \beta angle.
An analysis of the exchange interaction parameters demonstrates the
predominance of the interribbon exchange interactions which determine the whole
L-type ferrimagnetic spin structure.Comment: 7 pages, 8 figure
The Verwey structure of a natural magnetite
Complex charge and orbital molecule order observed in natural magnetite comparable to meteoritic samples is the most complex electronic order known to occur naturally.</p
Induced antiferromagnetism and large magnetoresistances in RuSr2(Nd,Y,Ce)2Cu2O10-d ruthenocuprates
RuSr2(Nd,Y,Ce)2Cu2O10-d ruthenocuprates have been studied by neutron
diffraction, magnetotransport and magnetisation measurements and the electronic
phase diagram is reported. Separate Ru and Cu spin ordering transitions are
observed, with spontaneous Cu antiferromagnetic order for low hole doping
levels p, and a distinct, induced-antiferromagnetic Cu spin phase in the 0.02 <
p < 0.06 pseudogap region. This ordering gives rise to large negative
magnetoresistances which vary systematically with p in the
RuSr2Nd1.8-xY0.2CexCu2O10-d series. A collapse of the magnetoresistance (MR)
and magnetisation in the pre-superconducting region may signify the onset of
superconducting fluctuations.Comment: 22 pages, 11 figure
Electronic Orders in the Verwey Structure of Magnetite
Electronic structure calculations of the Verwey ground state of magnetite,
Fe3O4, using density functional theory with treatment of on-site Coulomb
interactions (DFT+U scheme) are reported. These calculations use the
recently-published experimental crystal structure coordinates for magnetite in
the monoclinic space group Cc. The computed density distribution for minority
spin electron states close to the Fermi level demonstrates that charge order
and Fe2+-orbital order are present at the B-type lattice sites to a
first-approximation. However, Fe2+/Fe3+ charge differences are diminished
through weak bonding interactions of the Fe2+-states to specific pairs of
neighboring iron sites that create linear, three-B-atom trimeron units that may
be regarded as 'orbital molecules'. Trimerons are ordered evenly along most Fe
atom chains in the Verwey structure, but more complex interactions are observed
within one chain.Comment: 13 pages, 4 figures. Changes for version 2: Fig. 4 and corresponding
discussion extende
- …