18 research outputs found

    Residues of chlorinated pesticides in mother\u27s milk and child\u27s serum

    Get PDF
    Uzorci mlijeka i seruma 27 hospitaliziranih dojilja iz Bjelovara i Zaboka s okolnim mjestima analizirani su na ostatke kloriranih insekticida aldrina, dieldrina, endrina, heptaklora, heptaklor epoksida, lindana i ostalih stereoizomera heksaklorcikloheksana, pp-\u27DDT-a i metabolita (pp-\u27DDE i pp-\u27DDD) i op-\u27DDT. Posebno je još analizirano 18 seruma majki i isto toliko seruma njihove djece koji su svi iz Zagreba. U uzorcima smo dokazali prisutnost samo Gama-HCH (Lindan). Alfa-HCH, pp-\u27DDE, op-\u27DDT, pp-\u27DDD i pp-\u27DDT. Koncentracije nađenih insekticida mnogo su veće u mlijeku dojilja nego u serumima. U serumima djece bilo je manje samo pp-\u27DDE i pp-\u27DDT nego u serumima njihovih majki. Uzorci seruma dojilja iz Zaboka i okolnih mjesta, hospitaliziranih u Zaboku i serumi dojilja iz Bjelovara hospitaliziranih u Zagrebu (N = 27) sadržavaju više navedenih insekticida nego uzorci seruma dojilja s područja Zagreba (N = 18).Milk samples obtained from 27 hospitalized lactating women and an equal number of sera from the same women were examined for residues of chlorinated hydrocarbon insecticides: aldrin, dieldrin, endrin, heptachlor, heptachlorepoxide, lindan and other steroisomers of hexachlorcyclohexane, pp\u27DDT and its metabolites (pp\u27-DDE, pp\u27-DDD) and op\u27-DDT. Additional 18 samples of mother\u27s sera and an equal number of their children\u27s sera were examined separately. The aim was to find out whether there is a correlation between the pesticide residues in mother\u27s serum and mother\u27s milk and in the serum of the mother and her child. The insecticides were determined according to the procedure used by the US Food and Drug Administration (4). Chlorinated hydrocarbon insecticides in the serum were examined with the method described by Wyllie and coworkers (5). In all samples only the presence of a-HCH, y-HCH, pp\u27-DDE, op\u27-DDT, pp\u27-DDD and pp\u27-DDT could be demonstrated. The concentration ratio between mother\u27s milk and serum was between 4 and 11. The concentration ratio between mother\u27s and child\u27s serum was below 1 except for pp\u27-DDE and pp\u27-DDT

    Reporting of Methodologic Information on Trial Registries for Quality Assessment: A Study of Trial Records Retrieved from the WHO Search Portal

    Get PDF
    Background: Although randomized clinical trials (RCTs) are considered the gold standard of evidence, their reporting is often suboptimal. Trial registries have the potential to contribute important methodologic information for critical appraisal of study results. Methods and Findings: The objective of the study was to evaluate the reporting of key methodologic study characteristics in trial registries. We identified a random sample (n = 265) of actively recruiting RCTs using the World Health Organization International Clinical Trials Registry Platform (ICTRP) search portal in 2008. We assessed the reporting of relevant domains from the Cochrane Collaboration’s ‘Risk of bias’ tool and other key methodological aspects. Our primary outcomes were the proportion of registry records with adequate reporting of random sequence generation, allocation concealment, blinding, and trial outcomes. Two reviewers independently assessed each record. Weighted overall proportions in the ICTRP search portal for adequate reporting of sequence generation, allocation concealment, blinding (including and excluding open label RCT) and primary outcomes were 5.7% (95% CI 3.0–8.4%), 1.4% (0–2.8%), 41% (35–47%), 8.4% (4.1–13%), and 66% (60–72%), respectively. The proportion of adequately reported RCTs was higher for registries that used specific methodological fields for describing methods of randomization and allocation concealment compared to registries that did not. Concerning other key methodological aspects, weighted overall proportions of RCTs with adequately reported items were as follows: eligibility criteria (81%), secondary outcomes (46%), harm (5%) follow-up duration (62%), description of the interventions (53%) and sample size calculation (1%). Conclusions: Trial registries currently contain limited methodologic information about registered RCTs. In order to permit adequate critical appraisal of trial results reported in journals and registries, trial registries should consider requesting details on key RCT methods to complement journal publications. Full protocols remain the most comprehensive source of methodologic information and should be made publicly available

    SPIRIT 2013 Statement:Defining Standard Protocol Items for Clinical Trials

    No full text
    The protocol of a clinical trial serves as the foundation for study planning, conduct, reporting, and appraisal. However, trial protocols and existing protocol guidelines vary greatly in content and quality. This article describes the systematic development and scope of SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) 2013, a guideline for the minimum content of a clinical trial protocol. The 33-item SPIRIT checklist applies to protocols for all clinical trials and focuses on content rather than format. The checklist recommends a full description of what is planned; it does not prescribe how to design or conduct a trial. By providing guidance for key content, the SPIRIT recommendations aim to facilitate the drafting of high-quality protocols. Adherence to SPIRIT would also enhance the transparency and completeness of trial protocols for the benefit of investigators, trial participants, patients, sponsors, funders, research ethics committees or institutional review boards, peer reviewers, journals, trial registries, policymakers, regulators, and other key stakeholders

    SPIRIT 2013 Statement: defining standard protocol items for clinical trials

    No full text
    The protocol of a clinical trial serves as the foundation for study planning, conduct, reporting, and appraisal. However, trial protocols and existing protocol guidelines vary greatly in content and quality. This article describes the systematic development and scope of SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) 2013, a guideline for the minimum content of a clinical trial protocol. The 33-item SPIRIT checklist applies to protocols for all clinical trials and focuses on content rather than format. The checklist recommends a full description of what is planned; it does not prescribe how to design or conduct a trial. By providing guidance for key content, the SPIRIT recommendations aim to facilitate the drafting of high-quality protocols. Adherence to SPIRIT would also enhance the transparency and completeness of trial protocols for the benefit of investigators, trial participants, patients, sponsors, funders, research ethics committees or institutional review boards, peer reviewers, journals, trial registries, policymakers, regulators, and other key stakeholders

    Is belief larger than fact: expectations, optimism and reality for translational stem cell research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stem cell (SC) therapies hold remarkable promise for many diseases, but there is a significant gulf between public expectations and the reality of progress toward clinical application. Public expectations are fueled by stakeholder arguments for research and public funding, coupled with intense media coverage in an ethically charged arena. We examine media representations in light of the expanding global landscape of SC clinical trials, asking what patients may realistically expect by way of timelines for the therapeutic and curative potential of regenerative medicine?</p> <p>Methods</p> <p>We built 2 international datasets: (1) 3,404 clinical trials (CT) containing 'stem cell*' from ClinicalTrials.gov and the World Health Organization's International Clinical Trials Registry Search Portal; and (2) 13,249 newspaper articles on SC therapies using Factiva.com. We compared word frequencies between the CT descriptions and full-text newspaper articles for the number containing terms for SC type and diseases/conditions. We also developed inclusion and exclusion criteria to identify novel SC CTs, mainly regenerative medicine applications.</p> <p>Results</p> <p>Newspaper articles focused on human embryonic SCs and neurological conditions with significant coverage as well of cardiovascular disease and diabetes. In contrast, CTs used primarily hematopoietic SCs, with an increase in CTs using mesenchymal SCs since 2007. The latter dominated our novel classification for CTs, most of which are in phases I and II. From the perspective of the public, expecting therapies for neurological conditions, there is limited activity in what may be considered novel applications of SC therapies.</p> <p>Conclusions</p> <p>Given the research, regulatory, and commercialization hurdles to the clinical translation of SC research, it seems likely that patients and political supporters will become disappointed and disillusioned. In this environment, proponents need to make a concerted effort to temper claims. Even though the field is highly promising, it lacks significant private investment and is largely reliant on public support, requiring a more honest acknowledgement of the expected therapeutic benefits and the timelines to achieving them.</p

    The Use of Electronic Data Capture Tools in Clinical Trials: Web-Survey of 259 Canadian Trials

    No full text
    Background: Electronic data capture (EDC) tools provide automated support for data collection, reporting, query resolution, randomization, and validation, among other features, for clinical trials. There is a trend toward greater adoption of EDC tools in clinical trials, but there is also uncertainty about how many trials are actually using this technology in practice. A systematic review of EDC adoption surveys conducted up to 2007 concluded that only 20% of trials are using EDC systems, but previous surveys had weaknesses. Objectives: Our primary objective was to estimate the proportion of phase II/III/IV Canadian clinical trials that used an EDC system in 2006 and 2007. The secondary objectives were to investigate the factors that can have an impact on adoption and to develop a scale to assess the extent of sophistication of EDC systems. Methods: We conducted a Web survey to estimate the proportion of trials that were using an EDC system. The survey was sent to the Canadian site coordinators for 331 trials. We also developed and validated a scale using Guttman scaling to assess the extent of sophistication of EDC systems. Trials using EDC were compared by the level of sophistication of their systems. Results: We had a 78.2% response rate (259/331) for the survey. It is estimated that 41% (95% CI 37.5%-44%) of clinical trials were using an EDC system. Trials funded by academic institutions, government, and foundations were less likely to use an EDC system compared to those sponsored by industry. Also, larger trials tended to be more likely to adopt EDC. The EDC sophistication scale had six levels and a coefficient of reproducibility of 0.901 (P< .001) and a coefficient of scalability of 0.79. There was no difference in sophistication based on the funding source, but pediatric trials were likely to use a more sophisticated EDC system. Conclusion: The adoption of EDC systems in clinical trials in Canada is higher than the literature indicated: a large proportion of clinical trials in Canada use some form of automated data capture system. To inform future adoption, research should gather stronger evidence on the costs and benefits of using different EDC systems
    corecore