471 research outputs found

    Role of Bose enhancement in photoassociation

    Get PDF
    We discuss the role of Bose enhancement of the dipole matrix element in photoassociation, using stimulated Raman adiabatic passage as an example. In a nondegenerate gas the time scale for coherent optical transients tends to infinity in the thermodynamic limit, whereas Bose enhancement keeps this time scale finite in a condensate. Coherent transients are therefore absent in photoassociation of a thermal nondegenerate gas, but are feasible if the gas is a condensate.Comment: 14 pages, 2 figure

    Mean-Field Theory of Feshbach-Resonant Interactions in 85Rb Condensates

    Full text link
    Recent Feshbach-resonance experiments with 85Rb Bose-Einstein condensates have led to a host of unexplained results: dramatic losses of condensate atoms for an across-resonance sweep of the magnetic field, a collapsing condensate with a burst of atoms emanating from the remnant condensate, increased losses for decreasing interaction times-- until short times are reached, and seemingly coherent oscillations between remnant and burst atoms. Using a simple yet realistic mean-field model, we find that rogue dissociation, molecular dissociation to noncondensate atom pairs, is strongly implicated as the physical mechanism responsible for these observations.Comment: v2: numbers changed, not conclusions; 5 pages, 3 figures, submitted to PR

    Rate limit for photoassociation of a Bose-Einstein condensate

    Full text link
    We simulate numerically the photodissociation of molecules into noncondensate atom pairs that accompanies photoassociation of an atomic Bose-Einstein condensate into a molecular condensate. Such rogue photodissociation sets a limit on the achievable rate of photoassociation. Given the atom density \rho and mass m, the limit is approximately 6\hbar\rho^{2/3}/m. At low temperatures this is a more stringent restriction than the unitary limit of scattering theory.Comment: 5 pgs, 18 refs., 3 figs., submitted to Phys. Rev. Let

    Mean-field stationary state of a Bose gas at a Feshbach resonance

    Full text link
    We study the steady state of a zero-temperature Bose gas near a Feshbach or photoassociation resonance using a two-channel mean-field model that incorporates atomic and molecular condensates, as well as correlated atom pairs originating from dissociation of molecules into pairs of atoms. We start from a many-body Hamiltonian for atom-molecule conversion, and derive the time dependent version of the mean-field theory. The stationary solution of the time dependent model is rendered unique with an approximation that entails that all noncondensate atoms are correlated, as if emerging from dissociation of molecules. The steady state is solved numerically, but limiting cases are also found analytically. The system has a phase transition in which the atomic condensate emerges in a nonanalytic fashion. We quantify the scaling of the observable quantities, such as fractions of atomic and molecular condensates, with the detuning and the atom-molecule conversion strength. Qualitatively, the dependence on detuning rounds out with increasing coupling strength. A study of the thermodynamics shows that the pressure of the atom-molecule system is negative, even on the molecule side of the resonance. This indicates the possibility of mechanical instability

    Cooling trapped atoms in optical resonators

    Full text link
    We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency.Comment: 4 pages, 3 figures; version published in PR

    Pairing mean-field theory for the dynamics of dissociation of molecular Bose-Einstein condensates

    Get PDF
    We develop a pairing mean-field theory to describe the quantum dynamics of the dissociation of molecular Bose-Einstein condensates into their constituent bosonic or fermionic atoms. We apply the theory to one, two, and three-dimensional geometries and analyze the role of dimensionality on the atom production rate as a function of the dissociation energy. As well as determining the populations and coherences of the atoms, we calculate the correlations that exist between atoms of opposite momenta, including the column density correlations in 3D systems. We compare the results with those of the undepleted molecular field approximation and argue that the latter is most reliable in fermionic systems and in lower dimensions. In the bosonic case we compare the pairing mean-field results with exact calculations using the positive-PP stochastic method and estimate the range of validity of the pairing mean-field theory. Comparisons with similar first-principle simulations in the fermionic case are currently not available, however, we argue that the range of validity of the present approach should be broader for fermions than for bosons in the regime where Pauli blocking prevents complete depletion of the molecular condensate.Comment: 16 pages, 10 figure

    Non-destructive optical measurement of relative phase between two Bose condensates

    Full text link
    We study the interaction of light with two Bose condensates as an open quantum system. The two overlapping condensates occupy two different Zeeman sublevels and two driving light beams induce a coherent quantum tunneling between the condensates. We derive the master equation for the system. It is shown that stochastic simulations of the measurements of spontaneously scattered photons establish the relative phase between two Bose condensates, even though the condensates are initially in pure number states. These measurements are non-destructive for the condensates, because only light is scattered, but no atoms are removed from the system. Due to the macroscopic quantum interference the detection rate of photons depends substantially on the relative phase between the condensates. This may provide a way to distinguish, whether the condensates are initially in number states or in coherent states.Comment: 26 pages, RevTex, 8 postscript figures, 1 MacBinary eps-figur

    Dynamic splitting of a Bose-Einstein Condensate

    Full text link
    We study the dynamic process of splitting a condensate by raising a potential barrier in the center of a harmonic trap. We use a two-mode model to describe the phase coherence between the two halves of the condensate. Furthermore, we explicitly consider the spatial dependence of the mode funtions, which varies depending on the potential barrier. This allows to get the tunneling coupling between the two wells and the on-site energy as a function of the barrier height. Moreover we can get some insight on the collective modes which are excited by raising the barrier. We describe the internal and external degrees of freedom by variational ansatz. We distinguish the possible regimes as a function of the characteristic parameters of the problem and identify the adiabaticity conditions.Comment: 17 pages, 8 figure

    Directional `superradiant' collisions: bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate

    Full text link
    We study spontaneous directionality in the bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate (BEC), an effect analogous to `superradiant' emission of atom-photon pairs. Using a simplified model, we make analytic predictions regarding directional effects for both atom-atom and atom-photon emission. These are confirmed by numerical mean-field simulations, demonstrating the the feasibility of nearly perfect directional emission along the condensate axis. The dependence of the emission angle on the pump strength for atom-atom pairs is significantly different than for atom-photon pairs
    • …
    corecore