51,647 research outputs found

    Spin-dependent transport in molecular tunnel junctions

    Full text link
    We present measurements of magnetic tunnel junctions made using a self-assembled-monolayer molecular barrier. Ni/octanethiol/Ni samples were fabricated in a nanopore geometry. The devices exhibit significant changes in resistance as the angle between the magnetic moments in the two electrodes is varied, demonstrating that low-energy electrons can traverse the molecular barrier while maintaining spin coherence. An analysis of the voltage and temperature dependence of the data suggests that the spin-coherent transport signals can be degraded by localized states in the molecular barriers.Comment: 4 pages, 5 color figure

    The Contractile Fine Structure of Vertebrate Smooth Muscle

    Get PDF
    About 30 years ago, Ernst Fischer introduced a new approach to muscle research by comparing the fine structure, and the function of the contractile mechanism of smooth and striated muscle. At that time (Fischer, 1936a and b; 1938) he systematically and successfully investigated the total, the intrinsic, and the form birefringence of smooth muscles and compared his results with analogous data concerning the contractile structure (Noll and Weber, 1935) and the oriented actomyosin threads (Weber, 1935) of skeletal muscle. These investigations were especially important because the birefringence of all muscles is based on its contractile structure and functional state, and because birefringence was better understood in micellar and molecular terms since Wiener\u27s theory

    Propagation of optical excitations by dipolar interactions in metal nanoparticle chains

    Full text link
    Dispersion relations for dipolar modes propagating along a chain of metal nanoparticles are calculated by solving the full Maxwell equations, including radiation damping. The nanoparticles are treated as point dipoles, which means the results are valid only for a/d <= 1/3, where a is the particle radius and d the spacing. The discrete modes for a finite chain are first calculated, then these are mapped onto the dispersion relations appropriate for the infinite chain. Computed results are given for a chain of 50-nm diameter Ag spheres spaced by 75 nm. We find large deviations from previous quasistatic results: Transverse modes interact strongly with the light line. Longitudinal modes develop a bandwidth more than twice as large, resulting in a group velocity that is more than doubled. All modes for which k_mode <= w/c show strongly enhanced decay due to radiation damping.Comment: 26 pages, 7 figures, 2 tables. to appear in Phys. Rev.

    A numerical renormalization group study of laser induced freezing

    Get PDF
    We study the phenomenon of laser induced freezing, within a numerical renormalization scheme which allows explicit comparison with a recent defect mediated melting theory. Precise values for the `bare' dislocation fugacities and elastic moduli of the 2-d hard disk system are obtained from a constrained Monte Carlo simulation sampling only configurations {\em without} dislocations. These are used as inputs to appropriate renormalization flow equations to obtain the equilibrium phase diagram which shows excellent agreement with earlier simulation results. We show that the flow equations need to be correct at least up to third order in defect fugacity to reproduce meaningful results.Comment: Minor Corrections; Combined version of Europhys. Lett. 67 (2004) p. 814 and Europhys. Lett. 68 (2004) p. 16

    Rotating sample magnetometer for cryogenic temperatures and high magnetic fields

    Full text link
    We report on the design and implementation of a rotating sample magnetometer (RSM) operating in the variable temperature insert of a cryostat equipped with a high-field magnet. The limited space and the cryogenic temperatures impose the most critical design parameters: the small bore size of the magnet requires a very compact pick-up coil system and the low temperatures demand a very careful design of the bearings. Despite these difficulties the RSM achieves excellent resolution at high magnetic field sweep rates, exceeding that of a typical vibrating sample magnetometer by about a factor of ten. In addition the gas-flow cryostat and the high-field superconducting magnet provide a temperature and magnetic field range unprecedented for this type of magnetometer.Comment: 10 pages, 5 figure

    Monte Carlo calculation of the linear resistance of a three dimensional lattice Superconductor model in the London limit

    Full text link
    We have studied the linear resistance of a three dimensional lattice Superconductor model in the London limit London lattice model by Monte Carlo simulation of the vortex loop dynamics. We find excellent finite size scaling at the phase transition. We determine the dynamical exponent z=1.51z = 1.51 for the isotropic London lattice model.Comment: 4 pages, RevTeX with 3 postscript figures include

    Van der Waals loops and the melting transition in two dimensions

    Full text link
    Evidence for the existence of van der Waals loops in pressure p versus volume v plots has for some time supported the belief that melting in two dimensions is a first order phase transition. We report rather accurate equilibrium p(v) curves for systems of hard disks obtained from long Monte Carlo simulations. These curves, obtained in the constant volume ensemble, using periodic boundary conditions, exhibit well defined van der Waals loops. We illustrate their existence for finite systems that are known to undergo a continuous transition in the thermodynamic limit. To this end, we obtain magnetization m versus applied field curves from Monte Carlo simulations of the 2D Ising model, in the constant m ensemble, at the critical point. Whether van der Waals loops for disk systems behave in the thermodynamic limit as they do for the 2D Ising model at the critical point cannot be ruled out. Thus, the often made claim that melting in 2D is a first order phase transition, based on the evidence that van der Waals loops exist, is not sound.Comment: 10 pages, 6 Postscript figures (submitted to Phys.Rev.E). For related work, see http://pipe.unizar.es/~jf
    • 

    corecore