597 research outputs found

    Electronic charge reconstruction of doped Mott insulators in multilayered nanostructures

    Full text link
    Dynamical mean-field theory is employed to calculate the electronic charge reconstruction of multilayered inhomogeneous devices composed of semi-infinite metallic lead layers sandwiching barrier planes of a strongly correlated material (that can be tuned through the metal-insulator Mott transition). The main focus is on barriers that are doped Mott insulators, and how the electronic charge reconstruction can create well-defined Mott insulating regions in a device whose thickness is governed by intrinsic materials properties, and hence may be able to be reproducibly made.Comment: 9 pages, 8 figure

    Gap ratio in anharmonic charge-density-wave systems

    Full text link
    Many experimental systems exist that possess charge-density-wave order in their ground state. While this order should be able to be described with models similar to those used for superconductivity, nearly all systems have a ratio of the charge-density-wave order parameter to the transition temperature that is too high for conventional theories. Recent work explained how this can happen in harmonic systems, but when the lattice distortion gets large, anharmonic effects must play an increasingly important role. Here we study the gap ratio for anharmonic charge-density wave systems to see whether the low-temperature properties possess universality as was seen previously in the transition temperature and to see whether the explanation for the large gap ratios survives for anharmonic systems as well.Comment: (5 pages, 3 figures, ReVTeX

    The anharmonic electron-phonon problem

    Full text link
    The anharmonic electron-phonon problem is solved in the infinite-dimensional limit using quantum Monte Carlo simulation. Charge-density-wave order is seen to remain at half filling even though the anharmonicity removes the particle-hole symmetry (and hence the nesting instability) of the model. Superconductivity is strongly favored away from half filling (relative to the charge-density-wave order) but the anharmonicity does not enhance transition temperatures over the maximal values found in the harmonic limit.Comment: 5 pages typeset in ReVTeX. Four encapsulated postscript files include

    Thermoelectric transport parallel to the planes in a multilayered Mott-Hubbard heterostructure

    Full text link
    We present a theory for charge and heat transport parallel to the interfaces of a multilayer (ML) in which the interfacing gives rise the redistribution of the electronic charges. The ensuing electrical field couples self-consistently to the itinerant electrons, so that the properties of the ML crucially depend on an interplay between the on-site Coulomb forces and the long range electrostatic forces. The ML is described by the Falicov-Kimball model and the self-consistent solution is obtained by iterating simultaneously the DMFT and the Poisson equations. This yields the reconstructed charge profile, the electrical potential, the planar density of states, the transport function, and the transport coefficients of the device. We find that a heterostructure built of two Mott-Hubbard insulators exhibits, in a large temperature interval, a linear conductivity and a large temperature-independent thermopower. The charge and energy currents are confined to the central part of the ML. Our results indicate that correlated multilayers have the potential for applications; by tuning the band shift and the Coulomb correlation on the central planes, we can bring the chemical potential in the immediate proximity of the Mott-Hubbard gap edge and optimize the transport properties of the device. In such a heterostructure, a small gate voltage can easily induce a MI transition. This switching does not involve the diffusion of electrons over macroscopic distances and it is much faster than in ordinary semiconductors. Furthermore, the right combination of strongly correlated materials with small ZT can produce, theoretically at least, a heterostructure with a large ZT.Comment: 15 pages, 6 figure

    Effect of anisotropic hopping on the Bose Hubbard model phase diagram: strong-coupling perturbation theory on a square lattice

    Full text link
    There has been a recent resurgence of experimental efforts to quantitatively determine the phase diagram of the Bose Hubbard model by carefully analyzing experiments with ultracold bosonic atoms on an optical lattice. In many realizations of these experiments, the hopping amplitudes are not homogeneous throughout the lattice, but instead, the lattice has an anisotropy where hopping along one direction is not exactly equal to hopping along a perpendicular direction. In this contribution, we examine how an anisotropy in the hopping matrix elements affects the Mott lobes of the Bose Hubbard model. For weak anisotropy, we find the phase diagram is only slightly modified when expressed in terms of the average hopping, while for strong anisotropy, one expects to ultimately see dimensional crossover effects.Comment: (5 pages, 1 figure, RevTeX

    Thermal transport in the Falicov-Kimball model

    Full text link
    We prove the Jonson-Mahan theorem for the thermopower of the Falicov-Kimball model by solving explicitly for the correlation functions in the large dimensional limit. We prove a similar result for the thermal conductivity. We separate the results for thermal transport into the pieces of the heat current that arise from the kinetic energy and those that arise from the potential energy. Our method of proof is specific to the Falicov-Kimball model, but illustrates the near cancellations between the kinetic-energy and potential-energy pieces of the heat current implied by the Jonson-Mahan theorem.Comment: (11 pages, 7 figures, ReVTeX
    corecore