223 research outputs found
Self-referenced characterization of space-time couplings in near single-cycle laser pulses
We report on the characterization of space-time couplings in high energy
sub-2-cycle 770nm laser pulses using a self-referencing single-shot method.
Using spatially-encoded arrangement filter-based spectral phase interferometry
for direct electric field reconstruction (SEA-F-SPIDER) we characterize
few-cycle pulses with a wave-front rotation of 2.8x?10^11 rev/sec (1.38 mrad
per half-cycle) and pulses with pulse front tilts ranging from to -0.33 fs/um
to -3.03 fs/um.Comment: 6 pages, 6 figure
Optimisation of Quantum Trajectories Driven by Strong-field Waveforms
Quasi-free field-driven electron trajectories are a key element of
strong-field dynamics. Upon recollision with the parent ion, the energy
transferred from the field to the electron may be released as attosecond
duration XUV emission in the process of high harmonic generation (HHG). The
conventional sinusoidal driver fields set limitations on the maximum value of
this energy transfer, and it has been predicted that this limit can be
significantly exceeded by an appropriately ramped-up cycleshape. Here, we
present an experimental realization of such cycle-shaped waveforms and
demonstrate control of the HHG process on the single-atom quantum level via
attosecond steering of the electron trajectories. With our optimized optical
cycles, we boost the field-ionization launching the electron trajectories,
increase the subsequent field-to-electron energy transfer, and reduce the
trajectory duration. We demonstrate, in realistic experimental conditions, two
orders of magnitude enhancement of the generated XUV flux together with an
increased spectral cutoff. This application, which is only one example of what
can be achieved with cycle-shaped high-field light-waves, has farreaching
implications for attosecond spectroscopy and molecular self-probing
Plasmon signatures in high harmonic generation
High harmonic generation in polarizable multi-electron systems is
investigated in the framework of multi-configuration time-dependent
Hartree-Fock. The harmonic spectra exhibit two cut offs. The first cut off is
in agreement with the well established, single active electron cut off law. The
second cut off presents a signature of multi-electron dynamics. The strong
laser field excites non-linear plasmon oscillations. Electrons that are ionized
from one of the multi-plasmon states and recombine to the ground state gain
additional energy, thereby creating the second plateau.Comment: Major revision, 12 pages, 5 figures, submitted to J. Phys. B (2005),
accepte
Direct characterisation of tuneable few-femtosecond dispersive-wave pulses in the deep UV
Dispersive wave emission (DWE) in gas-filled hollow-core dielectric
waveguides is a promising source of tuneable coherent and broadband radiation,
but so far the generation of few-femtosecond pulses using this technique has
not been demonstrated. Using in-vacuum frequency-resolved optical gating, we
directly characterise tuneable 3fs pulses in the deep ultraviolet generated via
DWE. Through numerical simulations, we identify that the use of a pressure
gradient in the waveguide is critical for the generation of short pulses.Comment: 5 pages, 4 figure
Attosecond streaking of photoelectron emission from disordered solids
Attosecond streaking of photoelectrons emitted by extreme ultraviolet light
has begun to reveal how electrons behave during their transport within simple
crystalline solids. Many sample types within nanoplasmonics, thin-film physics,
and semiconductor physics, however, do not have a simple single crystal
structure. The electron dynamics which underpin the optical response of
plasmonic nanostructures and wide-bandgap semiconductors happen on an
attosecond timescale. Measuring these dynamics using attosecond streaking will
enable such systems to be specially tailored for applications in areas such as
ultrafast opto-electronics. We show that streaking can be extended to this very
general type of sample by presenting streaking measurements on an amorphous
film of the wide-bandgap semiconductor tungsten trioxide, and on
polycrystalline gold, a material that forms the basis of many nanoplasmonic
devices. Our measurements reveal the near-field temporal structure at the
sample surface, and photoelectron wavepacket temporal broadening consistent
with a spread of electron transport times to the surface
- …