50 research outputs found

    A Pleiotropic Response Is Induced in F9 Embryonal Carcinoma Cells and Rhino Mouse Skin by All-trans-Retinoic Acid, a RAR Agonist but Not by SR11237, a RXR-Selective Agonist

    Get PDF
    We evaluated SR11237, a retinoid X receptor (RXR)- specific compound, for its pharmacologic effects on cell differentiation in F9 embryonal carcinoma cells and rhino mouse epidermis. SR11237 can cause RXR/RXR homodimers to form and transactivate a reporter gene containing a RXR-response element. We confirmed, using nuclear receptor co-transfection assays in COS-1 cells, that SR11237 is effective at transactivating a chloramphenicol acetyltransferase reporter gene through RXRs but not retinoic acid receptors. When SR11237 was tested for its ability to modulate cell differentiation, it was inactive on F9 embryonal carcinoma cells and rhino mouse skin. Because differentiation in these systems is known to be regulated by RAR-specific compounds, such as all-trans-retinoic acid and (E)-4-[2- (5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1- propenyl benzoic acid], our results with SR11237 are compatible with the concept that classical retinoid pleiotropic responses are mediated by RXR/RAR heterodimeric nuclear receptors rather than through RXR/RXR homodimers

    Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    Get PDF
    Background: The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells) and 16 days (old cells). Results: A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186) than in young cells (467). Relatively, few genes (62) were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells.Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young and old cells. Numerous genes encoding transporters for carbohydrates and organic alcohols and acids were down-regulated in old cells only. Conclusion: Network analysis revealed very different transcriptional activities during the lag period in old and young cells. Rejuvenation seems to take place during exponential growth by replicative dilution of old cellular components

    Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal

    Get PDF
    Despite evidence of West Nile virus (WNV) activity in Colombia, Venezuela and Argentina, this virus has not been reported in most South American countries. In February 2009, we commenced an investigation for WNV in mosquitoes, horses and caimans from the Pantanal, Central-West Brazil. The sera of 168 horses and 30 caimans were initially tested using a flaviviruses-specific epitope-blocking enzyme-linked immunosorbent assay (blocking ELISA) for the detection of flavivirus-reactive antibodies. The seropositive samples were further tested using a plaque-reduction neutralisation test (PRNT90) for WNV and its most closely-related flaviviruses that circulate in Brazil to confirm the detection of specific virus-neutralising antibodies. Of the 93 (55.4%) blocking ELISA-seropositive horse serum samples, five (3%) were seropositive for WNV, nine (5.4%) were seropositive for St. Louis encephalitis virus, 18 (10.7%) were seropositive for Ilheus virus, three (1.8%) were seropositive for Cacipacore virus and none were seropositive for Rocio virus using PRNT90, with a criteria of > four-fold antibody titre difference. All caimans were negative for flaviviruses-specific antibodies using the blocking ELISA. No virus genome was detected from caiman blood or mosquito samples. The present study is the first report of confirmed serological evidence of WNV activity in Brazil

    IS HIGHER GOVERNMENT EFFICIENCY BRINGING ABOUT HIGHER INNOVATION?

    No full text

    OR and simulation in combination for optimization

    No full text
    corecore