2,710 research outputs found
Hubbard Model with Luscher fermions - a progress report
Some modifications of the Luscher algorithm, which reduce the autocorelation
time, are proposed and tested.Comment: 3 pages, uuencoded gzipped Postscript, contribution to Lattice 9
Hubbard Model with Luscher fermions
First applications of the new algorithm simulating dynamical fermions are
reported. The method reproduces previous results obtained with different
techniques.Comment: talk presented at the XII International Symposium LATTICE94,
Bielefeld, Germany, September 1994, to appear in the Proceedings. 3 pages,
LATEX, required Elsevier espcrc2.sty style file is attached at the end of
this LATEX text. Postscript figures included in the latex document with the
epsf facilit
Cubic anisotropy in high homogeneity thin (Ga,Mn)As layers
Historically, comprehensive studies of dilute ferromagnetic semiconductors,
e.g., -type (Cd,Mn)Te and (Ga,Mn)As, paved the way for a quantitative
theoretical description of effects associated with spin-orbit interactions in
solids, such as crystalline magnetic anisotropy. In particular, the theory was
successful in explaining {\em uniaxial} magnetic anisotropies associated with
biaxial strain and non-random formation of magnetic dimers in epitaxial
(Ga,Mn)As layers. However, the situation appears much less settled in the case
of the {\em cubic} term: the theory predicts switchings of the easy axis
between in-plane and directions as a
function of the hole concentration, whereas only the
orientation has been found experimentally. Here, we report on the observation
of such switchings by magnetization and ferromagnetic resonance studies on a
series of high-crystalline quality (Ga,Mn)As films. We describe our findings by
the mean-field - Zener model augmented with three new ingredients. The
first one is a scattering broadening of the hole density of states, which
reduces significantly the amplitude of the alternating carrier-induced
contribution. This opens the way for the two other ingredients, namely the
so-far disregarded single-ion magnetic anisotropy and disorder-driven
non-uniformities of the carrier density, both favoring the
direction of the apparent easy axis. However, according to our results, when
the disorder gets reduced a switching to the orientation
is possible in a certain temperature and hole concentration range.Comment: 12 pages, 9 figure
The Problem of Creative Collaboration
In this Article, we explore a central problem facing creative industries: how to organize collaborative creative production. We argue that informal rules are a significant and pervasive—but nonetheless underappreciated—tool for solving the problem. While existing literature has focused on how informal rules sustain incentives for producing creative work, we demonstrate how such rules can facilitate and organize collaboration in the creative space.
We also suggest that informal rules can be a better fit for creative organization than formal law. On the one side, unique features of creativity, especially high uncertainty and low verifiability, lead to organizational challenges that formal law cannot easily address, as demonstrated by recent high profile cases like Garcia v. Google, Inc. On the other side, certain informal rules can meet these challenges and facilitate organization. These informal rules, functioning through mechanisms like reputation and trust, can sustain organizational solutions without a manager, a hierarchical firm, or formal allocation of control rights. In addition to showing how informal rules can work without (much) formal law, we also sketch out the dynamics involved in more complex cases where informal rules function alongside formal law in organizing collaborative creativity
Interval identification of FMR parameters for spin reorientation transition in (Ga,Mn)As
In this work we report results of ferromagnetic resonance studies of a 6% 15
nm (Ga,Mn)As layer, deposited on (001)-oriented GaAs. The measurements were
performed with in-plane oriented magnetic field, in the temperature range
between 5K and 120K. We observe a temperature induced reorientation of the
effective in-plane easy axis from [-110] to [110] direction close to the Curie
temperature. The behavior of magnetization is described by anisotropy fields,
H_{eff} (= 4\piM -H_{2\perp}), H_{2\parallel}, and H_{4\parallel}. In order to
precisely investigate this reorientation, numerical values of anisotropy fields
have been determined using powerful - but still largely unknown - interval
calculations. In simulation mode this approach makes possible to find all the
resonance fields for arbitrarily oriented sample, which is generally
intractable analytically. In 'fitting' mode we effectively utilize full
experimental information, not only those measurements performed in special,
distinguished directions, to reliably estimate the values of important physical
parameters as well as their uncertainties and correlations.Comment: 3 pages, 3 figures. Presented at The European Conference "Physics of
Magnetism 2011" (PM'11), June 27 - July 1, 2011, Poznan, Polan
Thickness dependence of magnetic properties of (Ga,Mn)As
We report on a monotonic reduction of Curie temperature in dilute
ferromagnetic semiconductor (Ga,Mn)As upon a well controlled
chemical-etching/oxidizing thinning from 15 nm down to complete removal of the
ferro- magnetic response. The effect already starts at the very beginning of
the thinning process and is accompanied by the spin reorientation transition of
the in-plane uniaxial anisotropy. We postulate that a negative gradient along
the growth direction of self-compensating defects (Mn interstitial) and the
presence of surface donor traps gives quantitative account on these effects
within the p-d mean field Zener model with adequate mod- ifications to take a
nonuniform distribution of holes and Mn cations into account. The described
here effects are of practical importance for employing thin and ultrathin
layers of (Ga,Mn)As or relative compounds in concept spintronics devices, like
resonant tunneling devices in particular.Comment: 4 pages, 4 figures and supplementary information 2 pages, 1 figur
- …