1,386 research outputs found

    On single-copy entanglement

    Full text link
    The largest eigenvalue of the reduced density matrix for quantum chains is shown to have a simple physical interpretation and power-law behaviour in critical systems. This is verified numerically for XXZ spin chains.Comment: 4 pages, 2 figures, note added, typo correcte

    On the reduced density matrix for a chain of free electrons

    Full text link
    The properties of the reduced density matrix describing an interval of N sites in an infinite chain of free electrons are investigated. A commuting operator is found for arbitrary filling and also for open chains. For a half filled periodic chain it is used to determine the eigenfunctions for the dominant eigenvalues analytically in the continuum limit. Relations to the critical six-vertex model are discussed.Comment: 8 pages, small changes, Equ.(24) corrected, final versio

    Fluctuations in subsystems of the zero temperature XX chain: Emergence of an effective temperature

    Full text link
    The zero-temperature XX chain is studied with emphasis on the properties of a block of LL spins inside the chain. We investigate the quantum fluctuations resulting from the entanglement of the block with the rest of the chain using analytical as well as numerical (density matrix renormalization group) methods. It is found that the rest of the chain acts as a thermal environment and an effective temperature can be introduced to describe the fluctuations. We show that the effective temperature description is robust in the sense that several independent definitions (through fluctuation dissipation theorem, comparing with a finite temperature system) yield the same functional form in the limit of large block size (LL\to\infty). The effective temperature can also be shown to satisfy the basic requirements on how it changes when two bodies of equal or unequal temperatures are brought into contact.Comment: 19 pages, 7 figure

    Critical entanglement of XXZ Heisenberg chains with defects

    Full text link
    We study the entanglement properties of anisotropic open spin one-half Heisenberg chains with a modified central bond. The entanglement entropy between the two half-chains is calculated with the density-matrix renormalization method (DMRG).We find a logarithmic behaviour with an effective central charge c' varying with the length of the system. It flows to one in the ferromagnetic region and to zero in the antiferromagnetic region of the model. In the XX case it has a non-universal limit and we recover previous results.Comment: 8 pages, 15 figure

    On entanglement evolution across defects in critical chains

    Get PDF
    We consider a local quench where two free-fermion half-chains are coupled via a defect. We show that the logarithmic increase of the entanglement entropy is governed by the same effective central charge which appears in the ground-state properties and which is known exactly. For unequal initial filling of the half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde

    Temperature driven crossover phenomena in the correlation lengths of the one-dimensional t-J model

    Full text link
    We describe a modified transfer matrix renormalization group (TMRG) algorithm and apply it to calculate thermodynamic properties of the one-dimensional t-J model. At the supersymmetric point we compare with Bethe ansatz results and make direct connection to conformal field theory (CFT). In particular we study the crossover from the non-universal high T lattice into the quantum critical regime by calculating various correlation lengths and static correlation functions. Finally, the existence of a spin-gap phase is confirmed.Comment: 7 pages, 7 figure

    Evolution of entanglement after a local quench

    Full text link
    We study free electrons on an infinite half-filled chain, starting in the ground state with a bond defect. We find a logarithmic increase of the entanglement entropy after the defect is removed, followed by a slow relaxation towards the value of the homogeneous chain. The coefficients depend continuously on the defect strength.Comment: 14 pages, 9 figures, final versio

    On the relation between entanglement and subsystem Hamiltonians

    Full text link
    We show that a proportionality between the entanglement Hamiltonian and the Hamiltonian of a subsystem exists near the limit of maximal entanglement under certain conditions. Away from that limit, solvable models show that the coupling range differs in both quantities and allow to investigate the effect.Comment: 7 pages, 2 figures version2: minor changes, typos correcte

    Area law and vacuum reordering in harmonic networks

    Full text link
    We review a number of ideas related to area law scaling of the geometric entropy from the point of view of condensed matter, quantum field theory and quantum information. An explicit computation in arbitrary dimensions of the geometric entropy of the ground state of a discretized scalar free field theory shows the expected area law result. In this case, area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations. Furthermore, the explicit control on all the eigenvalues of the reduced density matrix allows for a verification of entropy loss along the renormalization group trajectory driven by the mass term. A further result of our computation shows that single-copy entanglement also obeys area law scaling, majorization relations and decreases along renormalization group flows.Comment: 15 pages, 6 figures; typos correcte

    On reduced density matrices for disjoint subsystems

    Full text link
    We show that spin and fermion representations for solvable quantum chains lead in general to different reduced density matrices if the subsystem is not singly connected. We study the effect for two sites in XX and XY chains as well as for sublattices in XX and transverse Ising chains.Comment: 10 pages, 4 figure
    corecore