63 research outputs found

    Evaluating Exposure of Northern Fur Seals, Callorhinus Ursinus, to Microplastic Pollution Through Fecal Analysis

    Get PDF
    Environmental microplastics are widely documented in marine life and bioaccumulation may present risks to marine predators. Investigations of microplastics in marine mammals are increasing, though none have examined animals routinely consumed by humans. Here, we investigate microplastic exposure in the northern fur seal (Callorhinus ursinus), a species consumed by humans, using fecal material. We examined 44 feces (scat) at sites encompassing the seals\u27 eastern Pacific range. Multiple contamination control measures were implemented, including field and laboratory controls. Fragments were the most common microplastic recovered, in 55% (24/44) of scat and no controls (range 1 to 86 fragments/scat, mean 16.6, sd 19.1). Microplastic fibers were recovered from 41% of scats (18/44), though some controls contained fibers confounding fiber results. Fecal analysis documented northern fur seal exposure to microplastics throughout their eastern Pacific range. © 201

    Characterisation of Oil Palm Acyl-CoA-Binding Proteins and Correlation of their Gene Expression with Oil Synthesis

    Get PDF
    Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain (ACBD). Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while ACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis

    Characterization of oil palm Acyl-CoA-Binding proteins and correlation of their gene expression with oil synthesis

    Get PDF
    Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain (ACBD). Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while ACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis
    corecore