76 research outputs found

    NCAM140 Interacts with the Focal Adhesion Kinase p125 fak and the SRC-related Tyrosine Kinase p59 fyn

    Get PDF
    Axonal growth cones respond to adhesion molecules and extracellular matrix components by rapid morphological changes and growth rate modification. Neurite outgrowth mediated by the neural cell adhesion molecule (NCAM) requires the src family tyrosine kinase p59(fyn) in nerve growth cones, but the molecular basis for this interaction has not been defined. The NCAM140 isoform, which is found in migrating growth cones, selectively co-immunoprecipitated with p59(fyn) from nonionic detergent (Brij 96) extracts of early postnatal mouse cerebellum and transfected rat B35 neuroblastoma and COS-7 cells. p59(fyn) did not associate significantly with the NCAM180 isoform, which is found at sites of stable neural cell contacts, or with the glycophosphatidylinositol-linked NCAM120 isoform. pp60(c-)src, a tyrosine kinase that promotes neurite growth on the neuronal cell adhesion molecule L1, did not interact with any NCAM isoform. Whereas p59(fyn) was constitutively associated with NCAM140, the focal adhesion kinase p125(fak), a nonreceptor tyrosine kinase known to mediate integrin-dependent signaling, became recruited to the NCAM140-p59(fyn) complex when cells were reacted with antibodies against the extracellular region of NCAM. Treatment of cells with a soluble NCAM fusion protein or with NCAM antibodies caused a rapid and transient increase in tyrosine phosphorylation of p125(fak) and p59(fyn). These results suggest that NCAM140 binding interactions at the cell surface induce the assembly of a molecular complex of NCAM140, p125(fak), and p59(fyn) and activate the catalytic function of these tyrosine kinases, initiating a signaling cascade that may modulate growth cone migration

    N-cadherin expression and function in cultured oligodendrocytes

    No full text
    N-Cadherin is a major cell adhesion molecule that is expressed in the developing nervous system where it has been implicated in neural migration and axon growth. Recently, a role for N-cadherin in oligodendrocyte differentiation has been identified [23]. Oligodendrocyte precursors adhere to N-cadherin and mature rapidly to produce myelin sheets. Since this implies that oligodendrocytes express N-caderin, we examined the expression of N-cadherin by oligodendrocytes in culture. N-Cadherin was expressed by O-2A progenitors, immature oligodendrocytes and mature oligodendrocytes, but at a lower level than in type 1 astrocytes in the same cultures. On mature oligodendrocytes, the N-cadherin was concentrated on the major processes emerging from the soma. The ability of N-cadherin and merosin to promote oligodendrocyte precursor migration was also studied. Average migration rates were significantly higher on merosin (11.2 μm/h) than on N-cadherin (5.6 μm/h). These results suggest that N-cadherin is not likely to function predominantly as a substrate that stimulates migration of O-2A progenitors, but may be more important in initiating early oligodendrocyte-axon interactions that promote the process of myelination
    corecore