1,177 research outputs found

    Dynamics of a Raman coupled model: entanglement and quantum computation

    Full text link
    The evolution of a Raman coupled three-level lambda atom with two quantized cavity modes is studied in the large detuning case; i.e. when the upper atomic level can be adiabatically eliminated. Particularly the situation when the two modes are prepared in initial coherent or squeezed states, with a large average number of photons, is investigated. It is found that the atom, after specific interaction times, disentangles from the two modes, leaving them, in certain cases, in entangled Schrodinger cat states. These disentanglement times can be controlled by adjusting the ratio between average numbers of photons in the two modes. It is also shown how this effective model may be used for implementing quantum information processing. Especially it is demonstrated how to generate various entangled states, such as EPR- and GHZ-states, and quantum logic operations, such as the control-not and the phase-gate.Comment: 8 pages, 6 figure

    The Reactions of O(21D) and OH(X2[pi]) with halogen containing molecules

    Get PDF

    Level crossings in a cavity QED model

    Full text link
    In this paper I study the dynamics of a two-level atom interacting with a standing wave field. When the atom is subjected to a weak linear force, the problem can be turned into a time dependent one, and the evolution is understood from the band structure of the spectrum. The presence of level crossings in the spectrum gives rise to Bloch oscillations of the atomic motion. Here I investigate the effects of the atom-field detuning parameter. A variety of different level crossings are obtained by changing the magnitude of the detuning, and the behaviour of the atomic motion is strongly affected due to this. I also consider the situation in which the detuning is oscillating in time and its impact on the atomic motion. Wave packet simulations of the full problem are treated numerically and the results are compared with analytical solutions given by the standard Landau-Zener and the three-level Landau-Zener models.Comment: 12 pages, 10 figure

    Transient effects on electron spin observation

    Get PDF
    In an earlier publication we addressed the problem of splitting an electron beam in the Stern-Gerlach experiment. In contrast to arguments put forward in the early days of quantum theory, we concluded that there are no issues of principle preventing the observation of electron spin during free flight. In that paper, however, we considered only a sudden switch off of the separating magnetic field. In this work we consider the possible effects of finite switching times at the beginning and the end of the interaction period. We consider a model where the coupling between the electron and the field is time dependent. As a result of the time dependence, the field also acquires an electric component, but this seems to cause no significant change of our conclusions. On the other hand, the smooth change of the interaction enforces the same longitudinal velocity on the electron both at the beginning and end of the interaction period because of conservation laws; this effect was missing in our earlier calculations. As the electrons are supposed to travel as a beam, this feature helps by restoring the beam quality after the interaction

    New spin squeezing and other entanglement tests for two mode systems of identical bosons

    Get PDF
    For any quantum state representing a physical system of identical particles, the density operator must satisfy the symmetrization principle (SP) and conform to super-selection rules (SSR) that prohibit coherences between differing total particle numbers. Here we consider bi-partitite states for massive bosons, where both the system and sub-systems are modes (or sets of modes) and particle numbers for quantum states are determined from the mode occupancies. Defining non-entangled or separable states as those prepared via local operations (on the sub-systems) and classical communication processes, the sub-system density operators are also required to satisfy the SP and conform to the SSR, in contrast to some other approaches. Whilst in the presence of this additional constraint the previously obtained sufficiency criteria for entanglement, such as the sum of the ˆSx and ˆSy variances for the Schwinger spin components being less than half the mean boson number, and the strong correlation test of |haˆm (bˆ†)ni|2 being greater than h(aˆ†)maˆm (bˆ†)nbˆni(m, n = 1, 2, . . .) are still valid, new tests are obtained in our work. We show that the presence of spin squeezing in at least one of the spin components ˆSx , ˆSy and ˆSz is a sufficient criterion for the presence of entanglement and a simple correlation test can be constructed of |haˆm (bˆ†)ni|2 merely being greater than zero.We show that for the case of relative phase eigenstates, the new spin squeezing test for entanglement is satisfied (for the principle spin operators), whilst the test involving the sum of the ˆSx and ˆSy variances is not. However, another spin squeezing entanglement test for Bose–Einstein condensates involving the variance in ˆSz being less than the sum of the squared mean values for ˆSx and ˆSy divided by the boson number was based on a concept of entanglement inconsistent with the SP, and here we present a revised treatment which again leads to spin squeezing as an entanglement test

    Between college and work in the Further Education and Training College sector

    Get PDF
    Students studying Civil Engineering (CE) at the Further Education and Training (FET) colleges spend periods of time in the classroom and workshop as well as in the workplace during experiential learning. The overall purpose of education and training in the college sector is generally understood as preparing students for employability, and difficulties in colleges performing this role are well known. In this article, these difficulties are examined in a novel way. The everyday perspectives of lecturers and supervisors about student learning in their college programmes and their work experience are translated into more theoretical language, using activity theory. A theoretical argument is made, which suggests that different sites of learning create different purposes, and that these different purposes derive from a distinction between knowledge and practice, which in turn has historical roots. The study concludes by suggesting that a new, common object of integrating theory and practice at all the sites would better link the college and workplace education and training systems, and tentatively suggests how this new object could be put into practice.Key words: activity theory; civil engineering; further education and training; theory and practic

    Radio-frequency dressed lattices for ultracold alkali atoms

    Get PDF
    Ultracold atomic gases in periodic potentials are powerful platforms for exploring quantum physics in regimes dominated by many-body effects as well as for developing applications that benefit from quantum mechanical effects. Further advances face a range of challenges including the realization of potentials with lattice constants smaller than optical wavelengths as well as creating schemes for effective addressing and manipulation of single sites. In this paper we propose a dressed-based scheme for creating periodic potential landscapes for ultracold alkali atoms with the capability of overcoming such difficulties. The dressed approach has the advantage of operating in a low-frequency regime where decoherence and heating effects due to spontaneous emission do not take place. These results highlight the possibilities of atom-chip technology in the future development of quantum simulations and quantum technologies, and provide a realistic scheme for starting such an exploration

    A cultural historical activity theory (CHAT) analysis of prehospital emergency medical care clinical mentorship to enable learning

    Get PDF
    Background. Clinical mentorship in health sciences education is a nurtured venture where mentees are guided through practice by their more experienced mentors. However, recent research suggests that there are problems with clinical mentorship.Objective. To explore problems in work-integrated learning within the mentor/mentee relationship.Methods. The cultural historical activity theory (CHAT) was used to interpret data gathered from diaries and focus group interviews.Results. Difficulties identified were poor communication between the university and the mentors at clinical platform sites. The unclear roles and responsibilities of mentees and mentors led to a breakdown of trust.Conclusions. Better university training and development of mentors would aid in the holistic development of mentors and mentees

    Entanglement trapping in a non-stationary structured reservoir

    Get PDF
    We study a single two-level atom interacting with a reservoir of modes defined by a reservoir structure function with a frequency gap. Using the pseudomodes technique, we derive the main features of a trapping state formed in the weak coupling regime. Utilising different entanglement measures we show that strong correlations and entanglement between the atom and the modes are in existence when this state is formed. Furthermore, an unexpected feature for the reservoir is revealed. In the long time limit and for weak coupling the reservoir spectrum is not constant in time.Comment: 10 pages, 16 figure

    Decoherence at constant excitation

    Full text link
    We present a simple exactly solvable extension of of the Jaynes-Cummings model by adding dissipation. This is done such that the total number of excitations is conserved. The Liouville operator in the resulting master equation can be reduced to blocks of 4×44\times 4 matrices
    corecore