131 research outputs found

    Multi-decadal river flow variations in France

    Get PDF
    International audienceIn this article, multi-decadal variations in the French hydroclimate are investigated, with a specific focus on river flows. Based on long observed series, it is shown that river flows in France generally exhibit large multi-decadal variations in the instrumental period (defined in this study as the period from the late 19th century to the present), especially in spring. Differences of means between 21 yr periods of the 20th century as large as 40% are indeed found for many gauging stations. Multi-decadal spring river flow variations are associated with variations in spring precipitation and temperature. These multi-decadal variations in precipitation are themselves found to be driven by large-scale atmospheric circulation, more precisely by a multi-decadal oscillation in a sea level pressure dipole between western Europe and the eastern Atlantic. It is suggested that the Atlantic Multidecadal Variability, the main mode of multidecadal variability in the North Atlantic-Europe sector, controls those variations in large-scale circulation and is therefore the main ultimate driver of multi-decadal variations in spring river flows. Potential multi-decadal variations in river flows in other seasons, and in particular summer, are also noted. As they are not associated with significant surface climate anomalies (i.e. temperature, precipitation) in summer, other mechanisms are investigated based on hydrological simulations. The impact of climate variations in spring on summer soil moisture, and the impact of soil moisture in summer on the runoff-to-precipitation ratio, could potentially play a role in multi-decadal summer river flow variations. The large amplitude of the multi-decadal variations in French river flows suggests that internal variability may play a very important role in the evolution of river flows during the next decades, potentially temporarily limiting, reversing or seriously aggravating the long-term impacts of anthropogenic climate change

    Postresectional lung injury in thoracic surgery pre and intraoperative risk factors: a retrospective clinical study of a hundred forty-three cases

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute respiratory dysfunction syndrome (ARDS), defined as acute hypoxemia accompanied by radiographic pulmonary infiltrates without a clearly identifiable cause, is a major cause of morbidity and mortality after pulmonary resection. The aim of the study was to determine the pre and intraoperative factors associated with ARDS after pulmonary resection retrospectively.</p> <p>Methods</p> <p>Patients undergoing elective pulmonary resection at Adnan Menderes University Medical Faculty Thoracic Surgery Department from January 2005 to February 2010 were included in this retrospective study. The authors collected data on demographics, relevant co-morbidities, the American Society of Anesthesiologists (ASA) Physical Status classification score, pulmonary function tests, type of operation, duration of surgery and intraoperative fluid administration (fluid therapy and blood products). The primary outcome measure was postoperative ARDS, defined as the need for continuation of mechanical ventilation for greater than 48-hours postoperatively or the need for reinstitution of mechanical ventilation after extubation. Statistical analysis was performed with Fisher exact test for categorical variables and logistic regression analysis for continuous variables.</p> <p>Results</p> <p>Of one hundred forty-three pulmonary resection patients, 11 (7.5%) developed postoperative ARDS. Alcohol abuse (p = 0.01, OR = 39.6), ASA score (p = 0.001, OR: 1257.3), resection type (p = 0.032, OR = 28.6) and fresh frozen plasma (FFP)(p = 0.027, OR = 1.4) were the factors found to be statistically significant.</p> <p>Conclusion</p> <p>In the light of the current study, lung injury after lung resection has a high mortality. Preoperative and postoperative risk factor were significant predictors of postoperative lung injury.</p

    Dynamically and Statistically Downscaled Seasonal Simulations of Maximum Surface Air Temperature Over the Southeastern United States

    Get PDF
    Coarsely resolved surface air temperature (2 m height) seasonal integrations from the Florida State University/Center for Ocean-Atmospheric Prediction Studies Global Spectral Model (FSU/COAPS GSM) (~1.8º lon.-lat. (T63)) for the period of 1994 to 2002 (March through September each year) are downscaled to a fine spatial scale of ~20 km. Dynamical and statistical downscaling methods are applied for the southeastern United States region, covering Florida, Georgia, and Alabama. Dynamical downscaling is conducted by running the FSU/COAPS Nested Regional Spectral Model (NRSM), which is nested into the domain of the FSU/COAPS GSM. We additionally present a new statistical downscaling method. The rationale for the statistical approach is that clearer separation of prominent climate signals (e.g., seasonal cycle, intraseasonal, or interannual oscillations) in observation and GSM, respectively, over the training period can facilitate the identification of the statistical relationship in climate variability between two data sets. Cyclostationary Empirical Orthogonal Function (CSEOF) analysis and multiple regressions are trained with those data sets to extract their statistical relationship, which eventually leads to better prediction of regional climate from the large-scale simulations. Downscaled temperatures are compared with the FSU/COAPS GSM fields and observations. Downscaled seasonal anomalies exhibit strong agreement with observations and a reduction in bias relative to the direct GSM simulations. Interannual temperature change is also reasonably simulated at local grid points. A series of evaluations including mean absolute errors, anomaly correlations, frequency of extreme events, and categorical predictability reveal that both downscaling techniques can be reliably used for numerous seasonal climate applications

    Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThe decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.J.A.S. and R.B. were funded by the Natural Environment Research Council (NE/P006760/1). C.D. acknowledges the National Science Foundation (NSF), which sponsors the National Center for Atmospheric Research. D.M.S. was supported by the Met Office Hadley Centre Climate Programme (GA01101) and the APPLICATE project, which is funded by the European Union’s Horizon 2020 programme. X.Z. was supported by the NSF (ARC#1023592). P.J.K. and K.E.M. were supported by the Canadian Sea Ice and Snow Evolution Network, which is funded by the Natural Science and Engineering Research Council of Canada. T.O. was funded by Environment and Climate Change Canada (GCXE17S038). L.S. was supported by the National Oceanic and Atmospheric Administration’s Climate Program Office
    corecore