130 research outputs found
Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central Au Collisions at =200 GeV
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC)
reports measurements of azimuthal dihadron correlations near midrapidity in
Au collisions at =200 GeV. These measurements
complement recent analyses by experiments at the Large Hadron Collider (LHC)
involving central Pb collisions at =5.02 TeV, which
have indicated strong anisotropic long-range correlations in angular
distributions of hadron pairs. The origin of these anisotropies is currently
unknown. Various competing explanations include parton saturation and
hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies
in Au collisions compared to those seen in Pb collisions at the
LHC. The larger extracted values in Au collisions at RHIC are
consistent with expectations from hydrodynamic calculations owing to the larger
expected initial-state eccentricity compared with that from Pb
collisions. When both are divided by an estimate of the initial-state
eccentricity the scaled anisotropies follow a common trend with multiplicity
that may extend to heavy ion data at RHIC and the LHC, where the anisotropies
are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has
minor changes to text and figures in response to PRL referee suggestions.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Cross Section and Transverse Single-Spin Asymmetry of Mesons in Collisions at GeV at Forward Rapidity
We present a measurement of the cross section and transverse single-spin
asymmetry () for mesons at large pseudorapidity from
~GeV collisions. The measured cross section for
~GeV/ and is well described by a
next-to-leading-order perturbative-quantum-chromodynamics calculation. The
asymmetries have been measured as a function of Feynman- () from
, as well as transverse momentum () from
~GeV/. The asymmetry averaged over positive is
. The results are consistent with prior
transverse single-spin measurements of forward and mesons at
various energies in overlapping ranges. Comparison of different particle
species can help to determine the origin of the large observed asymmetries in
collisions.Comment: 484 authors, 13 pages, 11 figures, 4 tables, 2008 data. v2 is version
accepted by Phys. Rev. D. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be)publicly
available at http://www.phenix.bnl.gov/papers.htm
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for pi^0 production in p+p collisions at sqrt(s) = 62.4 GeV
The PHENIX experiment presents results from the RHIC 2006 run with polarized
proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at
mid-rapidity. Unpolarized cross section results are measured for transverse
momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum
chromodynamics calculations are compared with the data, and while the
calculations are consistent with the measurements, next-to-leading logarithmic
corrections improve the agreement. Double helicity asymmetries A_LL are
presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the
gluon (x_g) with better statistical precision than our previous measurements at
sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in
the proton for 0.06 < x_g < 0.4.Comment: 387 authors from 63 institutions, 10 pages, 6 figures, 1 table.
Submitted to Physical Review D. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and single-transverse-spin asymmetry for very forward neutron production in polarized p+p collisions at sqrt(s)=200 GeV
The energy dependence of the single-transverse-spin asymmetry, A_N, and the
cross section for neutron production at very forward angles were measured in
the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV.
The neutrons were observed in forward detectors covering an angular range of up
to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45
to 1.0. The energy dependence of the measured cross sections were consistent
with x_F scaling, compared to measurements by an ISR experiment which measured
neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The
cross sections for large x_F neutron production for p+p collisions, as well as
those in e+p collisions measured at HERA, are described by a pion exchange
mechanism. The observed forward neutron asymmetries were large, reaching
A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative
x_F, were consistent with zero. The observed asymmetry for forward neutron
production is discussed within the pion exchange framework, with interference
between the spin-flip amplitude due to the pion exchange and nonflip amplitudes
from all Reggeon exchanges. Within the pion exchange description, the measured
neutron asymmetry is sensitive to the contribution of other Reggeon exchanges
even for small amplitudes.Comment: 383 authors, 16 pages, 18 figures, 6 tables. Submitted to Phys. Rev.
D. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Cross sections and double-helicity asymmetries of midrapidity inclusive charged hadrons in p+p collisions at sqrt(s)=62.4 GeV
Unpolarized cross sections and double-helicity asymmetries of
single-inclusive positive and negative charged hadrons at midrapidity from p+p
collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 <
p_T < 4.5 GeV/c are consistent with perturbative QCD calculations at
next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD
calculations including terms with next-to-leading-log accuracy, yielding
reduced theoretical uncertainties, also agree with the data. The
double-helicity asymmetry, sensitive at leading order to the gluon polarization
in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with
recent global parameterizations disfavoring large gluon polarization.Comment: PHENIX Collaboration. 447 authors, 12 pages, 5 figures, 5 tables.
Submitted to Physical Review
Double Spin Asymmetry of Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s)=200 GeV
We report on the first measurement of double-spin asymmetry, A_LL, of
electrons from the decays of hadrons containing heavy flavor in longitudinally
polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The
asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at
the Relativistic Heavy Ion Collider. The measured asymmetries are consistent
with zero within the statistical errors. We obtained a constraint for the
polarized gluon distribution in the proton of |Delta g/g(log{_10}x=
-1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order
perturbative-quantum-chromodynamics model, using the measured asymmetry.Comment: 385 authors, 17 pages, 15 figures, 5 tables. Submitted to Phys. Rev.
D. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Cross section for production via dielectrons in dAu collisions at GeV
We report a measurement of pairs from semileptonic heavy-flavor
decays in Au collisions at GeV. Exploring the mass
and transverse-momentum dependence of the yield, the bottom decay contribution
can be isolated from charm, and quantified by comparison to {\sc pythia} and
{\sc mc@nlo} simulations. The resulting -production cross section is
~mb, which is equivalent to a nucleon-nucleon cross section of
b.Comment: 375 authors, 16 pages, 8 figures, 7 tables, 2008 data. Submitted to
Phys. Rev. C Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p
collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX
experiment at the Relativistic Heavy-Ion Collider. Cross sections for the
inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per
binary collision for d+Au collisions relative to those in p+p collisions
(R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going
direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going
direction. The measured results are compared to a nuclear-shadowing model,
EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section,
sigma_br, and compared to lower energy p+A results. We also compare the results
to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity
dependence of the observed Upsilon suppression is consistent with lower energy
p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …