2 research outputs found

    Perspective Chapter: Genomics, Proteomics, and System Biology of Insecticides Resistance in Insects

    Get PDF
    Insecticide resistance is an inherited change in pest population exposure to a specific insecticide or group of insecticides. Overuse, misuse, and high interbreeding rates have led to insecticide resistance. Genomic technologies reveal mechanisms of resistance, including decreased target-site sensitivity and increased detoxification. Genomic projects have cloned and identified targeted genes in Drosophila melanogaster and studied resistance-associated mutations in various pest insects. Advancements in genome sequencing and annotation techniques have explored complex multigene enzyme systems, such as glutathione-S-transferases, esterases, and cytochrome P450, which facilitate insecticide resistance. Identifying specific genes involved in resistance and targeted genes is essential for developing new insecticides and strategies to control pests. Insects with resistance metabolize insecticidal compounds faster due to increased catalytic rate and gene amplification. So, system biology plays a very important role in the insect resistance against insecticides and different chemicals such as DDT and permethrin. From system biology, not only the identification of genes was done, but also the protein-protein interactions were found out, which were responsible in the insect resistance

    Role of Mosquito Microbiome in Insecticide Resistance

    No full text
    The gut microbiota of insects is one of the unexplored areas. The association with these microbiomes plays a vital role in supporting their survival and combat with ecological challenges. Mosquito is one of the focal attention insects among the Arthopods, being the vector of many pathogenic diseases including dengue and malaria. A variety of strategies have been designed and implemented to fight against these vectors including obnoxious use of insecticides. Indiscriminate use of insecticides has led to development of resistance against broad range of insecticides. Crucial role of bacteria in insecticide resistance has been under discussion. Many studies focus on the insecticide resistance due to gut microbiome. Thus, the role of gut microbiome is an important area for designing new vector control strategies and their role in improvement of a healthy environment
    corecore