3 research outputs found

    Effects of erosive challenge on the morphology and surface properties of luting cements

    No full text
    Abstract Introduction Few studies investigated the surface properties of luting cements after erosive challenge. Objective To evaluate the surface roughness (Ra), Vickers hardness (VHN) and morphology of 4 luting cements after erosive challenge. Material and method Twenty specimens of each cement were prepared (4×2mm) and divided into experimental (erosive challenge) and control (artificial saliva) groups (n=10): Rely X U200 (U200); Rely X ARC (ARC); Ketac Cem Easy Mix (Ketac) and Zinc phosphate (ZnP). The erosive challenge was performed by four daily erosive cycles (90s) in a cola drink and 2 h in artificial saliva over 7 days. Ra and VHN readings were performed before and after erosion. The percentage of hardness loss (%VHN) was obtained after erosion. The surface morphology was analyzed by scanning electron microscopy (SEM). ANOVA, Tukey and Student-T tests were used (α=0.05). Result After erosion, all luting cements had increase in Ra values and U200 and ZnP groups had the highest %VHN. After saliva immersion, only U200 and ZnP groups had significant increases in Ra values and there were no significant differences among the groups in %VHN. SEM analysis showed that Ketac and ZnP groups had rough and porous surfaces, and U200 group had higher resin matrix degradation than ARC group. Conclusion Erosive challenge with a cola drink affected the surface properties of all luting cements

    In vitro effects of erosive challenge on the surface properties of sealants

    No full text
    assess in vitro the surface roughness (Ra), Vickers hardness (VHN) and surface morphology of resin and glass ionomer materials used for sealants after dynamic erosive challenge. Methods: Twenty specimens of each material were prepared and divided into experimental (erosive challenge) and control groups (n=10): Protect Riva (SDI), Opallis Flow (3M ESPE), Fluroshield (Dentsply), Filtek Z350 XT Flow (3M ESPE). The erosive challenge was performed 4 times per day (90 s) in cola drink and for 2 h in artificial saliva for 7 days. The control specimens were maintained in artificial saliva. Ra and VHN readings were performed before and after erosion. The percentage of hardness loss (%VHN) was obtained after erosion. The surface morphology was evaluated by scanning electron microscopy (SEM). The data were analyzed by ANOVA, Tukey and paired t tests (α=0.05). Results: After erosion and saliva immersion, there was an increase in Ra values for all groups and Riva group showed the highest Ra values. After erosive challenge, Riva and Filtek groups showed significant decrease in VHN values, but Filtek group showed the greatest %VHN. For all groups there was inorganic particle protrusion and matrix degradation after erosion visualized by SEM images. Conclusions: Erosive challenge affected the surface properties of all materials used as sealants, particularly in the Riva and Filtek groups
    corecore