29 research outputs found

    Phospholipse c inhibitor, u73122, stimulates release of hsp-70 stress protein from A431 human carcinoma cells

    Get PDF
    BACKGROUND: Accumulating evidences suggest that Hsp 70, the inducible component of Hsp70 family, might release from a living cell. Here we show that a pharmacological inhibitor of phospholipase C activity U73122 caused a 2–4 fold reduction of an intracellular level of Hsp70 in A431 human carcinoma cells. RESULTS: A depletion of Hsp70 under U73122 was a result of the protein release since it was detected in cell culture medium, as was established by immunoprecipitation and precipitation with ATP-agarose. The reduction of Hsp70 level was specifically attributed to the inhibition of PLC, since the non-active inhibitor, U73343, had no effect on Hsp70 level. The PLC-dependent decrease of Hsp70 intracellular level was accompanied by the enhanced sensitivity of A431 cells to the apoptogenic effect of hydrogen peroxide. Here for the first time we demonstrated one of the possibilities for a cell to export Hsp70 in PLC-dependent manner. CONCLUSION: From our data we suggest that phospholipase C inhibition is one of the possible mechanisms of Hsp70 release from cells

    GAPDH binders as potential drugs for the therapy of polyglutamine diseases: Design of a new screening assay

    Get PDF
    AbstractProteins with long polyglutamine repeats form a complex with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which enhances aggregation and cytotoxicity in models of Huntington disease. The aim of this study was to develop a novel assay for the screening of anti-aggregation compounds with a focus on the aggregation-promoting capacity of GAPDH. The assay includes a pure Q58 polyglutamine fragment, GAPDH, and a transglutaminase that links the two proteins. The feasibility of the new assay was verified using two GAPDH binders, hydroxynonenal and −(−)deprenyl, and the benzothiazole derivative PGL-135 which exhibits anti-aggregation effect. All three substances were shown to reduce aggregation and cytotoxicity in the cell and in the fly model of Spinocerebellar ataxia

    Possible Function of Molecular Chaperones in Diseases Caused by Propagating Amyloid Aggregates

    No full text
    The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders

    The mTOR Pathway in Pluripotent Stem Cells: Lessons for Understanding Cancer Cell Dormancy

    No full text
    Currently, the success of targeted anticancer therapies largely depends on the correct understanding of the dormant state of cancer cells, since it is increasingly regarded to fuel tumor recurrence. The concept of cancer cell dormancy is often considered as an adaptive response of cancer cells to stress, and, therefore, is limited. It is possible that the cancer dormant state is not a privilege of cancer cells but the same reproductive survival strategy as diapause used by embryonic stem cells (ESCs). Recent advances reveal that high autophagy and mTOR pathway reduction are key mechanisms contributing to dormancy and diapause. ESCs, sharing their main features with cancer stem cells, have a delicate balance between the mTOR pathway and autophagy activity permissive for diapause induction. In this review, we discuss the functioning of the mTOR signaling and autophagy in ESCs in detail that allows us to deepen our understanding of the biology of cancer cell dormancy

    Protein Interactome of Amyloid-β as a Therapeutic Target

    No full text
    The amyloid concept of Alzheimer’s disease (AD) assumes the β-amyloid peptide (Aβ) as the main pathogenic factor, which injures neural and other brain cells, causing their malfunction and death. Although Aβ has been documented to exert its cytotoxic effect in a solitary manner, there is much evidence to claim that its toxicity can be modulated by other proteins. The list of such Aβ co-factors or interactors includes tau, APOE, transthyretin, and others. These molecules interact with the peptide and affect the ability of Aβ to form oligomers or aggregates, modulating its toxicity. Thus, the list of potential substances able to reduce the harmful effects of the peptide should include ones that can prevent the pathogenic interactions by specifically binding Aβ and/or its partners. In the present review, we discuss the data on Aβ-based complexes in AD pathogenesis and on the compounds directly targeting Aβ or the destructors of its complexes with other polypeptides

    Hydrocortisone 21-hemisuccinate did not prevent exogenous GAPDH-induced apoptosis in human neuroblastoma cells

    No full text
    These data are related to our paper “GAPDH-targeted therapy – a new approach for secondary damage after traumatic brain injury on rats” (Lazarev et al., In press), in which we explore the role of exogenous GAPDH in traumatic brain injury-induced neuron death, and the therapeutic application of small molecules that bind to the enzyme. The current article demonstrates the induction of apoptosis by exogenous GAPDH and the effectiveness of the hydrocortisone derivative for suppressing the pathogenic action of the enzyme
    corecore