106 research outputs found

    Development of speckle-free channel-cut crystal optics using plasma chemical vaporization machining for coherent x-ray applications

    Full text link
    We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.Takashi Hirano, Taito Osaka, Yasuhisa Sano, Yuichi Inubushi, Satoshi Matsuyama, Kensuke Tono, Tetsuya Ishikawa, Makina Yabashi, and Kazuto Yamauchi, "Development of speckle-free channel-cut crystal optics using plasma chemical vaporization machining for coherent x-ray applications", Review of Scientific Instruments 87, 063118 (2016) https://doi.org/10.1063/1.4954731

    Thin crystal development and applications for hard x-ray free-electron lasers

    Full text link
    Taito Osaka, Makina Yabashi, Yasuhisa Sano, Kensuke Tono, Yuichi Inubushi, Takahiro Sato, Kanade Ogawa, Satoshi Matsuyama, Tetsuya Ishikawa, and Kazuto Yamauchi "Thin crystal development and applications for hard x-ray free-electron lasers", Proc. SPIE 8848, Advances in X-Ray/EUV Optics and Components VIII, 884804 (27 September 2013); https://doi.org/10.1117/12.2023465

    Hard x-ray intensity autocorrelation using direct two-photon absorption

    Get PDF
    An intensity autocorrelation measurement is demonstrated to characterize a pulse duration of 9-keV x-ray free-electron laser (XFEL) pulses from a split-delay optical (SDO) system with four-bounce silicon 220 reflections in each branch. XFEL pulse replicas with variable time delays are generated by the SDO system itself. High intensity of >2×1016W/cm2 achieved in a self-seeding operation and careful data analysis allow the measurement with direct two-photon absorption. The autocorrelation trace gave a duration of 7.6±0.8fs in full width at half maximum for a Gaussian assumption. Furthermore, the trace shows good agreement with a simulation of the XFEL pulse shape propagating through the SDO system, irrespective of spectral chirps in the original XFEL pulses. Our results open the door toward direct temporal characterization of narrowband XFELs at the hard x-ray regime, such as self-seeded and future cavity-based XFELs, and indicate a solid way for temporal tailoring of ultrafast x-ray pulses with perfect crystals.Osaka T., Inoue I., Yamada J., et al. Hard x-ray intensity autocorrelation using direct two-photon absorption. Physical Review Research, 4, 1, L012035. https://doi.org/10.1103/PhysRevResearch.4.L012035

    Measurement of the X-ray spectrum of a free electron laser with a wide-range high-resolution single-shot spectrometer

    Get PDF
    We developed a single-shot X-ray spectrometer for wide-range high-resolution measurements of Self-Amplified Spontaneous Emission (SASE) X-ray Free Electron Laser (XFEL) pulses. The spectrometer consists of a multi-layer elliptical mirror for producing a large divergence of 22 mrad around 9070 eV and a silicon (553) analyzer crystal. We achieved a wide energy range of 55 eV with a fine spectral resolution of 80 meV, which enabled the observation of a whole SASE-XFEL spectrum with fully-resolved spike structures. We found that a SASE-XFEL pulse has around 60 longitudinal modes with a pulse duration of 7.7 ± 1.1 fs.Inubushi, Y.; Inoue, I.; Kim, J.; Nishihara, A.; Matsuyama, S.; Yumoto, H.; Koyama, T.; Tono, K.; Ohashi, H.; Yamauchi, K.; Yabashi, M. Measurement of the X-ray Spectrum of a Free Electron Laser with a Wide-Range High-Resolution Single-Shot Spectrometer. Appl. Sci. 2017, 7, 584. https://doi.org/10.3390/app7060584

    Damage to inorganic materials illuminated by focused beam of X-ray free-electron laser radiation

    Full text link
    X-ray free-electron lasers (XFELs) that utilize intense and ultra-short pulse X-rays may damage optical elements. We investigated the damage fluence thresholds of optical materials by using an XFEL focusing beam that had a power density sufficient to induce ablation phenomena. The 1 μ4m focusing beams with 5.5 keV and/or 10 keV photon energies were produced at the XFEL facility SACLA (SPring-8 Angstrom Compact free electron LAser). Test samples were irradiated with the focusing beams under normal and/or grazing incidence conditions. The samples were uncoated Si, synthetic silica glass (SiO2), and metal (Rh, Pt)-coated substrates, which are often used as X-ray mirror materials.Takahisa Koyama, Hirokatsu Yumoto, Kensuke Tono, Tadashi Togashi, Yuichi Inubushi, Tetsuo Katayama, Jangwoo Kim, Satoshi Matsuyama, Makina Yabashi, Kazuto Yamauchi, and Haruhiko Ohashi "Damage to inorganic materials illuminated by focused beam of x-ray free-electron laser radiation", Proc. SPIE 9511, Damage to VUV, EUV, and X-ray Optics V, 951107 (12 May 2015); https://doi.org/10.1117/12.218277

    Development of split-delay x-ray optics using Si(220) crystals at SACLA

    Full text link
    Taito Osaka, Takashi Hirano, Makina Yabashi, Yasuhisa Sano, Kensuke Tono, Yuichi Inubushi, Takahiro Sato, Kanade Ogawa, Satoshi Matsuyama, Tetsuya Ishikawa, and Kazuto Yamauchi "Development of split-delay x-ray optics using Si(220) crystals at SACLA", Proc. SPIE 9210, X-Ray Free-Electron Lasers: Beam Diagnostics, Beamline Instrumentation, and Applications II, 921009 (8 October 2014); https://doi.org/10.1117/12.2060238

    Damage threshold of coating materials on x-ray mirror for x-ray free electron laser

    Full text link
    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.Takahisa Koyama, Hirokatsu Yumoto, Takanori Miura, Kensuke Tono, Tadashi Togashi, Yuichi Inubushi, Tetsuo Katayama, Jangwoo Kim, Satoshi Matsuyama, Makina Yabashi, Kazuto Yamauchi, and Haruhiko Ohashi, "Damage threshold of coating materials on x-ray mirror for x-ray free electron laser", Review of Scientific Instruments 87, 051801 (2016) https://doi.org/10.1063/1.4950723

    Systematic-error-free wavefront measurement using an X-ray single-grating interferometer

    Full text link
    In this study, the systematic errors of an X-ray single-grating interferometer based on the Talbot effect were investigated in detail. Non-negligible systematic errors induced by an X-ray camera were identified and a method to eliminate the systematic error was proposed. Systematic-error-free measurements of the wavefront error produced by multilayer focusing mirrors with large numerical apertures were demonstrated at the SPring-8 Angstrom Compact free electron LAser. Consequently, wavefront aberration obtained with two different cameras was found to be consistent with an accuracy better than λ/12.Takato Inoue, Satoshi Matsuyama, Shogo Kawai, Hirokatsu Yumoto, Yuichi Inubushi, Taito Osaka, Ichiro Inoue, Takahisa Koyama, Kensuke Tono, Haruhiko Ohashi, Makina Yabashi, Tetsuya Ishikawa, and Kazuto Yamauchi, "Systematic-error-free wavefront measurement using an X-ray single-grating interferometer", Review of Scientific Instruments 89, 043106 (2018), https://doi.org/10.1063/1.5026440
    • …
    corecore