155 research outputs found

    Chaotic inflation limits for non-minimal models with a Starobinsky attractor

    Get PDF
    We investigate inflationary attractor points by analysing non-minimally coupled single field inflation models in two opposite limits; the `flat' limit in which the first derivative of the conformal factor is small and the `steep' limit, in which the first derivative of the conformal factor is large. We consider a subset of models that yield Starobinsky inflation in the steep conformal factor, strong coupling, limit and demonstrate that they result in ϕ2n-chaotic inflation in the opposite flat, weak coupling, limit. The suppression of higher order powers of the inflaton field in the potential is shown to be related to the flatness condition on the conformal factor. We stress that the chaotic attractor behaviour in the weak coupling limit is of a different, less universal, character than the Starobinsky attractor. Agreement with the COBE normalisation cannot be obtained in both attractor limits at the same time and in the chaotic attractor limit the scale of inflation depends on the details of the conformal factor, contrary to the strong coupling Starobinsky attractor

    Gravity dual of spin and charge density waves

    Get PDF
    At high enough charge density, the homogeneous state of the D3-D7’ model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field

    Flowing holographic anyonic superfluid

    Get PDF
    We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7’ probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier

    Structure of six-dimensional microstate geometries

    Get PDF
    We investigate the structure of smooth and horizonless microstate geometries in six dimensions, in the spirit of the five-dimensional analysis of Gibbons and Warner [ arXiv:1305.0957 ]. In six dimensions, which is the natural setting for horizonless geometries with the charges of the D1-D5-P black hole, the natural black objects are strings and there are no Chern-Simons terms for the tensor gauge fields. However, we still find that the same reasoning applies: in absence of horizons, there can be no smooth stationary solutions without non-trivial topology. We use topological arguments to describe the Smarr formula in various examples: the uplift of the five-dimensional minimal supergravity microstates to six dimensions, the two-charge D1-D5 microstates, and the non-extremal JMaRT solution. We also discuss D1-D5-P superstrata and confirm that the Smarr formula gives the same result as for the D1-D5 supertubes which are topologically equivalent

    Thermodynamics of higher spin black holes in AdS 3

    Get PDF
    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, R \mathbb{R} ) × SL( N, R \mathbb{R} ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges

    Multi-centered D1-D5 solutions at finite B-moduli

    Get PDF
    We study the fate of two-centered D1-D5 systems on T 4 away from the singular supergravity point in the moduli space. We do this by considering a background D1-D5 black hole with a self-dual B-field moduli turned on and treating the second center in the probe limit in this background. We find that in general marginal bound states at zero moduli become metastable at finite B-moduli, demonstrating a breaking of supersymmetry. However, we also find evidence that when the charges of both centers are comparable, the effects of supersymmetry breaking become negligible. We show that this effect is independent of string coupling and thus it should be possible to reproduce this in the CFT at weak coupling. We comment on the implications for the fuzzball proposal

    Unravelling holographic entanglement entropy in higher spin theories

    Get PDF
    There are two proposals that compute holographic entanglement entropy in AdS 3 higher spin theories based on SL( N, ℝ) Chern-Simons theory. We show explicitly that these two proposals are equivalent. We also designed two methods that solve systematically the equations for arbitrary N . For finite charge backgrounds in AdS 3 , we find exact agreement between our expressions and the short interval correction of the entanglement entropy for an excited state in a CFT 2

    Particle number and 3D Schrödinger holography

    Get PDF
    We define a class of space-times that we call asymptotically locally Schrödinger space-times. We consider these space-times in 3 dimensions, in which case they are also known as null warped AdS 3 . The boundary conditions are formulated in terms of a specific frame field decomposition of the metric which contains two parts: an asymptotically locally AdS metric and a product of a lightlike frame field with itself. Asymptotically we say that the lightlike frame field is proportional to the particle number generator N regardless of whether N is an asymptotic Killing vector or not

    Warped conformal field theory as lower spin gravity

    Get PDF
    Two dimensional Warped Conformal Field Theories (WCFTs) may represent the simplest examples of field theories without Lorentz invariance that can be described holographically. As such they constitute a natural window into holography in non- AdS space–times, including the near horizon geometry of generic extremal black holes. It is shown in this paper that WCFTs posses a type of boost symmetry. Using this insight, we discuss how to couple these theories to background geometry. This geometry is not Riemannian. We call it Warped Geometry and it turns out to be a variant of a Newton–Cartan structure with additional scaling symmetries. With this formalism the equivalent of Weyl invariance in these theories is presented and we write two explicit examples of WCFTs. These are free fermionic theories. Lastly we present a systematic description of the holographic duals of WCFTs. It is argued that the minimal setup is not Einstein gravity but an SL(2,R)×U(1) Chern–Simons Theory, which we call Lower Spin Gravity. This point of view makes manifest the definition of boundary for these non- AdS geometries. This case represents the first step towards understanding a fully invariant formalism for WN field theories and their holographic duals

    Firewalls in AdS/CFT

    Get PDF
    Several recent papers argue against firewalls by relaxing the requirement for locality outside the stretched horizon. In the firewall argument, locality essentially serves the purpose of ensuring that the degrees of freedom required for infall are those in the proximity of the black hole and not the ones in the early radiation. We make the firewall argument sharper by utilizing the AdS/CFT framework and claim that the firewall argument essentially states that the dual to a thermal state in the CFT is a firewall
    corecore