1,605 research outputs found

    Coherence-based operational nonclassicality criteria

    Get PDF
    The nonclassicality of quantum states is a fundamental resource for quantum technologies and quantum information tasks in general. In particular, a pivotal aspect of quantum states lies in their coherence properties, encoded in the nondiagonal terms of their density matrix in the Fock-state bosonic basis. We present operational criteria to detect the nonclassicality of individual quantum coherences that only use data obtainable in experimentally realistic scenarios. We analyze and compare the robustness of the nonclassical coherence aspects when the states pass through lossy and noisy channels. The criteria can be immediately applied to experiments with light, atoms, solid-state systems, and mechanical oscillators, thus providing a toolbox allowing practical experiments to more easily detect the nonclassicality of generated states

    Nonclassicality detection from few Fock-state probabilities

    Full text link
    We devise a new class of criteria to certify the nonclassicality of photon- and phonon-number statistics. Our criteria extend and strengthen the broadly used Klyshko's criteria, which require knowledge of only a finite set of Fock-state probabilities. This makes the criteria well-suited to experimental implementation in realistic conditions. Moreover, we prove the completeness of our method in some scenarios, showing that, when only two or three Fock-state probabilities are known, it detects all finite distributions incompatible with classical states. In particular, we show that our criteria detect a broad class of noisy Fock states as nonclassical, even when Klyshko's do not. The method is directly applicable to trapped-ion, superconducting circuits, and optical and optomechanical experiments with photon-number resolving detectors. This work represents a significant milestone towards a complete characterisation of the nonclassicality accessible from limited knowledge of the Fock-state probabilities.Comment: 18 pages, 18 figures; comments welcom

    Nonclassicality detection from few Fock-state probabilities

    Get PDF
    We devise a new class of criteria to certify the nonclassicality of photon- and phonon-number statistics. Our criteria extend and strengthen the broadly used Klyshko's criteria, which require knowledge of only a finite set of Fock-state probabilities. This makes the criteria well-suited to experimental implementation in realistic conditions. Moreover, we prove the completeness of our method in some scenarios, showing that, when only two or three Fock-state probabilities are known, it detects all finite distributions incompatible with classical states. In particular, we show that our criteria detect a broad class of noisy Fock states as nonclassical, even when Klyshko's do not. The method is directly applicable to trapped-ion, superconducting circuits, and optical and optomechanical experiments with photon-number resolving detectors. This work represents a significant milestone towards a complete characterisation of the nonclassicality accessible from limited knowledge of the Fock-state probabilities

    Development of Non Expensive Technologies for Precise Maneuvering of Completely Autonomous Unmanned Aerial Vehicles

    Get PDF
    In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory

    The meaning of redundancy and consensus in quantum objectivity

    Full text link
    While the terms "redundancy" and "consensus" are often used as synonyms in the context of quantum objectivity, we show here that these should be understood as two related but distinct notions, that quantify different features of the quantum-to-classical transition. We show that the two main frameworks used to measure quantum objectivity, namely spectrum broadcast structure and quantum Darwinism, are best suited to quantify redundancy and consensus, respectively. Furthermore, by analyzing explicit examples of states with nonlocally encoded information, we highlight the potentially stark difference between the degrees of redundancy and consensus. In particular, this causes a break in the hierarchical relations between spectrum broadcast structure and quantum Darwinism. Our framework provides a new perspective to interpret known and future results in the context of quantum objectivity, paving the way for a deeper understanding of the emergence of classicality from the quantum realm.Comment: 11+7 pages, 4 figure
    corecore