32 research outputs found

    A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability

    Get PDF
    SummaryCircadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake

    Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer

    Get PDF
    BACKGROUND: BP1 is a novel homeobox gene cloned in our laboratory. Our previous studies in leukemia demonstrated that BP1 has oncogenic properties, including as a modulator of cell survival. Here BP1 expression was examined in breast cancer, and the relationship between BP1 expression and clinicopathological data was determined. METHODS: Total RNA was isolated from cell lines, tumors, and matched normal adjacent tissue or tissue from autopsy. Reverse transcription polymerase chain reaction was performed to evaluate BP1 expression. Statistical analysis was accomplished with SAS. RESULTS: Analysis of 46 invasive ductal breast tumors demonstrated BP1 expression in 80% of them, compared with a lack of expression in six normal breast tissues and low-level expression in one normal breast tissue. Remarkably, 100% of tumors that were negative for the estrogen receptor (ER) were BP1-positive, whereas 73% of ER-positive tumors expressed BP1 (P = 0.03). BP1 expression was also associated with race: 89% of the tumors of African American women were BP1-positive, whereas 57% of those from Caucasian women expressed BP1 (P = 0.04). However, there was no significant difference in BP1 expression between grades I, II, and III tumors. Interestingly, BP1 mRNA expression was correlated with the ability of malignant cell lines to cause breast cancer in mice. CONCLUSION: Because BP1 is expressed abnormally in breast tumors, it could provide a useful target for therapy, particularly in patients with ER-negative tumors. The frequent expression of BP1 in all tumor grades suggests that activation of BP1 is an early event

    How to Be a Graduate Advisee

    No full text

    Synchrony and neural coding in cerebellar circuits

    Get PDF
    The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input-output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor circuits

    Subunit Dependence of Na Channel Slow Inactivation and Open Channel Block in Cerebellar Neurons

    Get PDF
    Purkinje and cerebellar nuclear neurons both have Na currents with resurgent kinetics. Previous observations, however, suggest that their Na channels differ in their susceptibility to entering long-lived inactivated states. To compare fast inactivation, slow inactivation, and open-channel block, we recorded voltage-clamped, tetrodotoxin-sensitive Na currents in Purkinje and nuclear neurons acutely isolated from mouse cerebellum. In nuclear neurons, recovery from all inactivated states was slower, and open-channel unblock was less voltage-dependent than in Purkinje cells. To test whether specific subunits contributed to this differential stability of inactivation, experiments were repeated in Na(V)1.6-null (med) mice. In med Purkinje cells, recovery times were prolonged and the voltage dependence of open-channel block was reduced relative to control cells, suggesting that availability of Na(V)1.6 is quickly restored at negative potentials. In med nuclear cells, however, currents were unchanged, suggesting that Na(V)1.6 contributes little to wild-type nuclear cells. Extracellular Na(+) prevented slow inactivation more effectively in Purkinje than in nuclear neurons, consistent with a resilience of Na(V)1.6 to slow inactivation. The tendency of nuclear Na channels to inactivate produced a low availability during trains of spike-like depolarization. Hyperpolarizations that approximated synaptic inhibition effectively recovered channels, suggesting that increases in Na channel availability promote rebound firing after inhibition

    β-Adrenergic Regulation of Synaptic NMDA Receptors by cAMP-Dependent Protein Kinase

    Get PDF
    AbstractTo identify the protein kinases regulating synaptic NMDA receptors, as well as the conditions favoring enhancement of NMDA receptor–mediated excitatory postsynaptic currents (EPSCs) by phosphorylation, we studied the effects of kinase activation and inhibition in hippocampal neurons. Inhibition of cAMP-dependent protein kinase (PKA) prevented recovery of NMDA receptors from calcineurin-mediated dephosphorylation induced by synaptic activity, suggesting that tonically active PKA phosphorylates receptors during quiescent periods. Conversely, elevation of PKA activity by forskolin, cAMP analogs, or the β-adrenergic receptor agonists norepinephrine and isoproterenol overcame the ability of calcineurin to depress the amplitude of NMDA EPSCs. Thus, stimulation of β-adrenergic receptors during excitatory synaptic transmission can increase charge transfer and Ca2+ influx through NMDA receptors

    Altered Subthreshold Sodium Currents and Disrupted Firing Patterns in Purkinje Neurons of Scn8a Mutant Mice

    Get PDF
    Sodium currents and action potentials were characterized in Purkinje neurons from ataxic mice lacking expression of the sodium channel Scn8a. Peak transient sodium current was ∼60% of that in normal mice, but subthreshold sodium current was affected much more. Steady-state current elicited by voltage ramps was reduced to ∼30%, and resurgent sodium current, an unusual transient current elicited on repolarization following strong depolarizations, was reduced to 8%–18%. In jolting mice, with a missense mutation in Scn8a, steady-state and resurgent current were also reduced, with altered voltage dependence and kinetics. Both spontaneous firing and evoked bursts of spikes were diminished in cells from null and jolting mice. Evidently Scn8a channels carry most subthreshold sodium current and are crucial for repetitive firing
    corecore