639 research outputs found
Dose-dependent positive-to-negative shift of litter effects on seedling growth: a modelling study on 35 plant litter types
Modelling the inter-relationships between litter accumulation and plant–soil feedback is a major challenge to predict natural and agricultural ecosystem dynamics. At increasing levels of undecomposed plant litter, seedling growth tends to show a multi-faceted response trend, characterised by a peak of positive stimulation at lower dosage followed by inhibition at higher dosage. In this study, a new logistic model was developed to describe such trend and disentangle substrate-specific positive and negative effects of plant litter. The model was tested on 35 litter types applied to the common phytometer Lepidium sativum; all litter types were collected in Mediterranean shrublands of Campania region (southern Italy). Model fitting resulted to be generally higher relative to the widely used linear log response model, although in only half of the cases it also gave more parsimonious results in terms of minimising information loss. Positive and negative effects of plant litter resulted to be uncorrelated, showing that the overall trend is probably the result of the combined action of separate factors rather than the effect of a single factor behaving differently at the different doses. The results of this work provide new tools to finely tune the optimal doses in experiments on hormesis and litter phytotoxicity, through the identification of the most suited doses to centre the range of nearly linear response to litter concentration. A wide screening is also presented on the phytotoxicity profiles of a number of spontaneous plant species widely distributed in the Mediterranean area
Simulation of cellular irradiation with the CENBG microbeam line using GEANT4
Light-ion microbeams provide a unique opportunity to irradiate biological
samples at the cellular level and to investigate radiobiological effects at low
doses of high LET ionising radiation. Since 1998 a single-ion irradiation
facility has been developed on the focused horizontal microbeam line of the
CENBG 3.5 MV Van de Graaff accelerator. This setup delivers in air single
protons and alpha particles of a few MeV onto cultured cells, with a spatial
resolution of a few microns, allowing subcellular targeting. In this paper, we
present results from the use of the GEANT4 toolkit to simulate cellular
irradiation with the CENBG microbeam line, from the entrance to the microprobe
up to the cellular medium.Comment: 6 pages, 8 figures, presented at the 2003 IEEE-NSS conference,
Portland, OR, USA, October 20-24, 200
Technical developments for computed tomography on the CENBG nanobeam line
The use of ion microbeams as probes for computedtomography has proven to be a powerful tool for the three-dimensional characterization of specimens a few tens of micrometers in size. Compared to other types of probes, the main advantage is that quantitative information about mass density and composition can be obtained directly, using specific reconstruction codes. At the Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), this technique was initially developed for applications in cellular biology. However, the observation of the cell ultrastructure requires a sub-micron resolution. The construction of the nanobeamline at the Applications Interdisciplinaires des Faisceaux d’Ions en Region Aquitaine (AIFIRA) irradiation facility has opened new perspectives for such applications.
The implementation of computedtomography on the nanobeamline of CENBG has required a careful design of the analysis chamber, especially microscopes for precise sample visualization, and detectors for scanning transmission ion microscopy (STIM) and for particle induced X-ray emission (PIXE). The sample can be precisely positioned in the three directions X, Y, Z and a stepper motor coupled to a goniometer ensures the rotational motion. First images of 3D tomography were obtained on a reference sample containing microspheres of certified diameter, showing the good stability of the beam and the sample stage, and the precision of the motion
The Geant4-DNA project
The Geant4-DNA project proposes to develop an open-source simulation software
based and fully included in the general-purpose Geant4 Monte Carlo simulation
toolkit. The main objective of this software is to simulate biological damages
induced by ionising radiation at the cellular and sub-cellular scale. This
project was originally initiated by the European Space Agency for the
prediction of deleterious effects of radiation that may affect astronauts
during future long duration space exploration missions. In this paper, the
Geant4-DNA collaboration presents an overview of the whole ongoing project,
including its most recent developments already available in the last Geant4
public release (9.3 BETA), as well as an illustration example simulating the
direct irradiation of a chromatin fibre. Expected extensions involving several
research domains, such as particle physics, chemistry and cellular and
molecular biology, within a fully interdiciplinary activity of the Geant4
collaboration are also discussed.Comment: presented by S. Incerti at the ASIA SIMULATION CONFERENCE 2009,
October 7-9, 2009, Ritsumeikan University, Shiga, Japa
Allelic Variation of Wheat Flour Allergens in a Collection of Wheat Genotypes
Wheat is the most widely grown crop in the world and provides 20% of the daily protein and food calories for 4.5 billion people. Together with rice, it is the most important food crop in the developing world. In the last decades, various symptoms have been recorded across the population due to the consumption of wheat products, also summarized as "wheat allergy." Wheat allergy is usually reported as a food allergy but can also be a contact allergy as a result of exposure to wheat. Several important wheat allergens have been characterized in the last years through biochemical, immunological, and molecular biological techniques. In the present work, the identification of allelic variation of genes involved in wheat allergy was reported. A collection of wheat genotypes was screened in order to identify new alleles. A total of 14 new alleles were identified forprofilin, triosephosphate-isomerase, dehydrin, glyceraldehyde-3-phosphate-dehydrogenase,α/βgliadin, GluB3-23,andGlutathione transferaseallergen genes (located on chromosomes 1B, 3B, 6A, and homoelogous groups 5 and 7), potentially related to a minor allergenicity and useful in breeding programs
Probucol treatment is associated with an ABCA1-independent mechanism of cholesterol efflux to lipid poor apolipoproteins from foam cell macrophages
Objective
Probucol is a cholesterol-lowering agent whose ability to prevent atherosclerosis is currently under study. Herein, we investigate the putative mechanism of probucol by observation of changes in cellular cholesterol efflux and lipid droplet morphology in macrophages.
Results
The inhibitory activity of probucol was assessed in non-foam or foam cell macrophages expressing ABCA1 generated by treatment with fetal calf serum (FCS) alone or in combination with acetylated LDL, respectively. Probucol inhibited cholesterol efflux to apolipoprotein A-I (apoA-I) by 31.5±0.1% in THP-1 non-foam cells and by 18.5±0.2% in foam cells. In probucol-treated non-foam THP-1 cells, nascent high-density lipoprotein (nHDL) particles with a diameter < 7 nm were generated, while in probucol-treated THP-1 foam cells nHDL particles of > 7 nm in diameter containing cholesterol were produced. Foam cells also displayed a significant accumulation of free cholesterol at the plasma membrane, as measured by percent cholestenone formed. Intracellularly, there was a significant decrease in lipid droplet number and an increase in size in probucol-treated THP-1 foam cells when compared to non-treated cells.
Conclusions
We report for the first time that probucol is unable to completely inhibit cholesterol efflux in foam cells to the same extent as in non-foam cells. Indeed, functional nHDL is released from foam cells in the presence of probucol. This difference in inhibitory effect could potentially be explained by changes in the plasma membrane pool as well as intracellular cholesterol storage independently of ABCA1
Awareness and Sources of Knowledge about Obstructive Sleep Apnea: A Cross Sectional Survey Study
Obstructive sleep apnea (OSA) is a multifactorial sleep breathing disorder, seriously impacting quality of life and involving approximately 1 billion of the world’s population. It is characterized by episodes of total cessation of breathing or decreases in airflow during sleep. Available data suggest that most cases of OSA remain undiagnosed even in developed countries. This is due to a lack of widespread knowledge about this pathology and the medical morbidities and mortality it brings about, among both laypeople and physicians. Moreover, despite receiving indications about the need to undergo specific evaluations for OSA signs and symptoms, sometimes patients do not pay sufficient attention to the problem. This is probably due to a lack of correct information on these issues. The present investigation analyzed the level of knowledge about OSA pathology and the sources through which a group of OSA patients gained information on their condition. A survey of 92 patients diagnosed with OSA (mean age 60.55 ± 10.10) and referred to the Unit of Orthodontics and Dental Sleep Medicine of the University of Bologna was conducted by means of a questionnaire investigating sociodemographic characteristics, the level of general knowledge on OSA pathology and its possible medical consequences. Despite about two third (67.38%) of the population demonstrating extensive knowledge, remarkably, a group of subjects (20.65%) had poor awareness of the OSA condition. A statistically significant correlation emerged between the level of knowledge about OSA and the level of education (p = 0.002). A great effort should be made to improve the quality of information and the communication modalities for OSA to enable a fully appropriate awareness of the condition among patients
Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models
New physical processes specific for microdosimetry simulation are under development in the Geant4 Low Energy Electromagnetic package. The first set of models implemented for this purpose cover the interactions of electrons, protons and light ions in liquid water; they address a physics domain relevant to the simulation of radiation effects in biological systems, where water represents an important component. The design developed for effectively handling particle interactions down to a low energy scale and the physics models implemented in the first public release of the software are described
Models of biological effects of radiation in the Geant4 toolkit
A project, named Geant4-DNA, is in progress to extend the Geant4 simulation toolkit to model the effects of radiation with biological systems at cellular and DNA level. The first component implemented in the first development cycle of the project describes the fractional survival of a population of cells irradiated with photons or charged particles. The software system developed provides the user the option to choose among a small set of alternative models for the calculation of mammalian cell survival after irradiation. The flexible design adopted makes the system open to further extension to implement other cell survival models available in literature. The preliminary design of a prototype of the cell survival models implemented and preliminary results in some selected cell lines are described
- …