266 research outputs found

    BRG1, a SWI/SNF chromatin remodeling enzyme ATPase, is required for maintenance of nuclear shape and integrity

    Get PDF
    We recently reported that reducing the levels of BRG1, the catalytic subunit of mammalian SWI/SNF chromatin remodeling enzymes, induces alterations in nuclear shape in a breast epithelial cell line. Immunostaining the BRG1 knockdown cells with nuclear lamina antibodies revealed a significantly increased frequency of grooves, or invaginations, in the nuclei. Disruption of each of the major cytoplasmic filament systems (actin, tubulin and cytokeratins) had no impact on the BRG1-dependent changes in nuclear shape, indicating that the observed changes in nuclear morphology are unlikely to be a result of alterations in the integrity of the nuclear-cytoplamic contacts in the cell. We propose that the BRG1-dependent nuclear shape changes reflect a role for the chromatin remodeling enzyme in maintaining the structural integrity of the nucleus via global regulation of chromatin structure and dynamics within the nucleus

    Increasingly transformed MCF-10A cells have a progressively tumor-like phenotype in three-dimensional basement membrane culture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MCF-10A cells are near diploid and normal human mammary epithelial cells. In three-dimensional reconstituted basement membrane culture, they undergo a well-defined program of proliferation, differentiation, and growth arrest, forming acinar structures that recapitulate many aspects of mammary architecture <it>in vivo</it>. The pre-malignant MCF-10AT cells and malignant MCF-10CA1a lines were sequentially derived from the MCF-10A parental cell line first by expression of a constitutively active T24 H-Ras generating the MCF-10AT cell line. This was followed by repeated selection for increasingly aggressive tumor formation from cells recovered from xenograft tumors in immuno-compromised mice, generating the MCF-10CA1a cell line. When inoculated subcutaneously into the flanks of immuno-compromised mice, MCF-10AT cells occasionally form tumors, whereas MCF-10CA1a cells invariably form tumors with a shorter latency than MCF-10AT derived tumors.</p> <p>Results</p> <p>MCF-10AT cells grown in three-dimensional basement membrane culture form complex multi-acinar structures that produce a basement membrane but undergo delayed cell cycle arrest and have incomplete luminal development. MCF-10CA1a cells grown in three-dimensional basement membrane culture form large, hyper-proliferative masses, that retain few characteristics of MCF10A acini and more closely resemble tumors.</p> <p>Conclusion</p> <p>Here we report on the growth and differentiation properties of these three matched cell lines in three-dimensional basement membrane culture. Features of tissue morphogenesis were assessed, including proliferation, basement membrane formation, polarization of alpha-6 beta-4 integrin to the basement membrane, formation of cell:cell junctions, and apoptosis for luminal clearance. The matched series of normal MCF-10A, pre-malignant MCF-10AT, and malignant MCF-10CA1a cells offers a unique opportunity to study the mechanisms of malignant progression both in a three-dimensional microenvironment and in the same cell background.</p

    Mammalian SWI/SNF Enzymes and the Epigenetics of Tumor Cell Metabolic Reprogramming

    Get PDF
    Tumor cells reprogram their metabolism to survive and grow in a challenging microenvironment. Some of this reprogramming is performed by epigenetic mechanisms. Epigenetics is in turn affected by metabolism; chromatin modifying enzymes are dependent on substrates that are also key metabolic intermediates. We have shown that the chromatin remodeling enzyme Brahma-related gene 1 (BRG1), an epigenetic regulator, is necessary for rapid breast cancer cell proliferation. The mechanism for this requirement is the BRG1-dependent transcription of key lipogenic enzymes and regulators. Reduction in lipid synthesis lowers proliferation rates, which can be restored by palmitate supplementation. This work has established BRG1 as an attractive target for breast cancer therapy. Unlike genetic alterations, epigenetic mechanisms are reversible, promising gentler therapies without permanent off-target effects at distant sites

    The PPARgamma locus makes long-range chromatin interactions with selected tissue-specific gene loci during adipocyte differentiation in a protein kinase A dependent manner

    Get PDF
    Differentiation signaling results in reprogramming of cellular gene expression that leads to morphological changes and functional specialization of a precursor cell. This global change in gene expression involves temporal regulation of differentiation-specific genes that are located throughout the genome, raising the idea that genome structure may also be re-organized during cell differentiation to facilitate regulated gene expression. Using in vitro adipocyte differentiation as a model, we explored whether gene organization within the nucleus is altered upon exposure of precursor cells to signaling molecules that induce adipogenesis. The peroxisome proliferator-activated receptor gamma (PPARgamma) nuclear hormone receptor is a master determinant of adipogenesis and is required for adipose differentiation. We utilized the chromosome conformation capture (3C) assay to determine whether the position of the PPARgamma locus relative to other adipogenic genes is changed during differentiation. We report that the PPARgamma2 promoter is transiently positioned in proximity to the promoters of genes encoding adipokines and lipid droplet associated proteins at 6 hours post-differentiation, a time that precedes expression of any of these genes. In contrast, the PPARgamma2 promoter was not in proximity to the EF1alpha promoter, which drives expression of a constitutively active, housekeeping gene that encodes a translation elongation factor, nor was the PPARgamma2 promoter in proximity to the promoter driving the expression of the C/EBPalpha regulatory protein. The formation of the long-range, intergenic interactions involving the PPARgamma2 promoter required the regulatory factor C/EBPbeta, elevated cyclic AMP (cAMP) levels, and protein kinase A (PKA) signaling. We conclude that genome organization is dynamically remodeled in response to adipogenic signaling, and we speculate that these transient inter-genic interactions may be formed for the purposes of selecting some of the transcriptionally silent tissue-specific loci for subsequent transcriptional activation

    Calcineurin broadly regulates the initiation of skeletal muscle-specific gene expression by binding target promoters and facilitating the interaction of the SWI/SNF chromatin remodeling enzyme

    Get PDF
    Calcineurin (Cn) is a calcium-activated serine/threonine protein phosphatase that is broadly implicated in diverse cellular processes, including the regulation of gene expression. During skeletal muscle differentiation, Cn activates the NFAT transcription factor but also promotes differentiation by counteracting the negative influences of protein kinase C beta (PKCbeta) via dephosphorylation and activation of BRG1, an enzymatic subunit of the mammalian SWI/SNF ATP-dependent chromatin remodeling enzyme. Here we identified four major temporal patterns of Cn-dependent gene expression in differentiating myoblasts and determined that Cn is broadly required for the activation of the myogenic gene expression program. Mechanistically, Cn promotes gene expression through direct binding to myogenic promoter sequences and facilitating the binding of BRG1, other SWI/SNF subunit proteins, and MyoD, a critical lineage determinant for skeletal muscle differentiation. We conclude that the Cn phosphatase directly impacts the expression of myogenic genes by promoting ATP-dependent chromatin remodeling and formation of transcription-competent promoters

    Targeting the chromatin remodeling enzyme BRG1 increases the efficacy of chemotherapy drugs in breast cancer cells

    Get PDF
    Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer. An inhibitor of the BRG1 bromodomain had no effect on breast cancer cell viability, but an inhibitory molecule that targets the BRG1 ATPase activity recapitulated the increased drug efficacy observed in the presence of BRG1 knockdown. We further demonstrate that inhibition of BRG1 ATPase activity blocks the induction of ABC transporter genes by these chemotherapeutic drugs and that BRG1 binds to ABC transporter gene promoters. This inhibition increased intracellular concentrations of the drugs, providing a likely mechanism for the increased chemosensitivity. Since ABC transporters and their induction by chemotherapy drugs are a major cause of chemoresistance and treatment failure, these results support the idea that targeting the enzymatic activity of BRG1 would be an effective adjuvant therapy for breast cancer

    Inducible changes in cell size and attachment area due to expression of a mutant SWI/SNF chromatin remodeling enzyme

    Get PDF
    The SWI/SNF enzymes belong to a family of ATP-dependent chromatin remodeling enzymes that have been functionally implicated in gene regulation, development, differentiation and oncogenesis. BRG1, the catalytic core subunit of some of the SWI/SNF enzymes, can interact with known tumor suppressor proteins and can act as a tumor suppressor itself. We report that cells that inducibly express ATPase-deficient versions of BRG1 increase in cell volume, area of attachment and nuclear size upon expression of the mutant BRG1 protein. Examination of focal adhesions reveals qualitative changes in paxillin distribution but no difference in the actin cytoskeletal structure. Increases in cell size and shape correlate with over-expression of two integrins and the urokinase-type plasminogen activator receptor (uPAR), which is also involved in cell adhesion and is often over-expressed in metastatic cancer cells. These findings demonstrate that gene expression pathways affected by chromatin remodeling enzymes can regulate the physical dimensions of mammalian cell morphology

    Casein kinase 2-mediated phosphorylation of Brahma-related gene 1 controls myoblast proliferation and contributes to SWI/SNF complex composition

    Get PDF
    Transcriptional regulation is modulated in part by chromatin-remodeling enzymes that control gene accessibility by altering chromatin compaction or nucleosome positioning. Brahma-related gene 1 (Brg1), a catalytic subunit of the mammalian SWI/SNF chromatin-remodeling enzymes, is required for both myoblast proliferation and differentiation, and the control of Brg1 phosphorylation by calcineurin, PKCbeta1, and p38 regulates the transition to differentiation. However, we hypothesized that Brg1 activity might be regulated by additional kinases. Here, we report that Brg1 is also a target of casein kinase 2 (CK2), a serine/threonine kinase, in proliferating myoblasts. We found that CK2 interacts with Brg1, and mutation of putative phosphorylation sites to non-phosphorylatable (Ser to Ala, SA) or phosphomimetic residues (Ser to Glu, SE) reduced Brg1 phosphorylation by CK2. Although BRG1-deleted myoblasts that ectopically express the SA-Brg1 mutant proliferated similarly to the parental cells or cells ectopically expressing wild-type (WT) Brg1, ectopic expression of the SE-Brg1 mutant reduced proliferation and increased cell death, similar to observations from cells lacking Brg1. Moreover, pharmacological inhibition of CK2 increased myoblast proliferation. Furthermore, the Pax7 promoter, which controls expression of a key transcription factor required for myoblast proliferation, was in an inaccessible chromatin state in the SE-Brg1 mutant, suggesting that hyperphosphorylated Brg1 cannot remodel chromatin. WT-, SA-, and SE-Brg1 exhibited distinct differences in interacting with and affecting expression of the SWI/SNF subunits Baf155 and Baf170 and displayed differential sub-nuclear localization. Our results indicate that CK2-mediated phosphorylation of Brg1 regulates myoblast proliferation and provides insight into one mechanism by which composition of the mammalian SWI/SNF enzyme complex is regulated

    SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells

    Get PDF
    The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization

    The bone-specific Runx2-P1 promoter displays conserved three-dimensional chromatin structure with the syntenic Supt3h promoter

    Get PDF
    Three-dimensional organization of chromatin is fundamental for transcriptional regulation. Tissue-specific transcriptional programs are orchestrated by transcription factors and epigenetic regulators. The RUNX2 transcription factor is required for differentiation of precursor cells into mature osteoblasts. Although organization and control of the bone-specific Runx2-P1 promoter have been studied extensively, long-range regulation has not been explored. In this study, we investigated higher-order organization of the Runx2-P1 promoter during osteoblast differentiation. Mining the ENCODE database revealed interactions between Runx2-P1 and Supt3h promoters in several non-mesenchymal human cell lines. Supt3h is a ubiquitously expressed gene located within the first intron of Runx2. These two genes show shared synteny across species from humans to sponges. Chromosome conformation capture analysis in the murine pre-osteoblastic MC3T3-E1 cell line revealed increased contact frequency between Runx2-P1 and Supt3h promoters during differentiation. This increase was accompanied by enhanced DNaseI hypersensitivity along with RUNX2 and CTCF binding at the Supt3h promoter. Furthermore, interplasmid-3C and luciferase reporter assays showed that the Supt3h promoter can modulate Runx2-P1 activity via direct association. Taken together, our data demonstrate physical proximity between Runx2-P1 and Supt3h promoters, consistent with their syntenic nature. Importantly, we identify the Supt3h promoter as a potential regulator of the bone-specific Runx2-P1 promoter. Acids Research
    • …
    corecore