3 research outputs found

    Nanoscale Departures: Excess Lipid Leaving the Surface during Supported Lipid Bilayer Formation

    No full text
    The behavior of small liposomes on surfaces of inorganic oxides remains enigmatic. Under appropriate conditions it results in the formation of supported lipid bilayers (SLBs). During this process, some lipids leave the surface (desorb). We were able to visualize this by a combination of time-resolved fluorescence microscopy and fluorescence recovery after photobleaching studies. Our observations also allowed us to analyze the kinetics of bilayer patch growth during the late stages of SLB formation. We found that it entails a balance between desorption of excess lipids and further adsorption of liposomes from solution. These studies were performed with liposomes containing zwitterionic phospholipids (dioleoylphosphatidylcholine alone or a mixture of dioleoylphosphatidylcholine, dipalmitoylphosphatidylcholine, and cholesterol) on TiO<sub>2</sub> in the presence of Ca<sup>2+</sup> but in the absence of other salts

    Platelet Immobilization on Supported Phospholipid Bilayers for Single Platelet Studies

    No full text
    The worldwide cardiovascular disease (CVD) epidemic is of grave concern. A major role in the etiology of CVDs is played by the platelets (thrombocytes). Platelets are anuclear cell fragments circulating in the blood. Their primary function is to catalyze clot formation, limiting traumatic blood loss in the case of injury. The same process leads to thrombosis in the case of CVDs, which are commonly managed with antiplatelet therapy. Platelets also have other, nonhemostatic functions in wound healing, inflammation, and tissue regeneration. They play a role in the early stages of atherosclerosis and the spread of cancer through metastases. Much remains to be learned about the regulation of these diverse platelet functions under physiological and pathological conditions. Breakthroughs in this regard are expected to come from single platelet studies and systems approaches. The immobilization of platelets at surfaces is advantageous for developing such approaches, but platelets are activated when they come in contact with foreign surfaces. In this work, we develop and validate a protocol for immobilizing platelets on supported lipid bilayers without activation due to immobilization. Our protocol can therefore be used for studying platelets with a wide variety of surface-sensitive techniques

    Time-of-Flight Secondary Ion Mass Spectrometry with Principal Component Analysis of Titania–Blood Plasma Interfaces

    No full text
    Treatment of osseoimplant surfaces with autologous platelet-rich plasma prepared according to the plasma rich in growth factors (PRGF-Endoret) protocol prior to implantation yields promising results in the clinic. Our objective is to understand the organization of complex interfaces between blood plasma preparations of various compositions and model titania surfaces. Here we present the results of the morphological and chemical characterization of TiO<sub>2</sub> surfaces incubated with four types of blood plasma preparations devoid of leukocytes and red blood cells: either enriched in platelets (PRGF-Endoret) or platelet-depleted, and either activated with CaCl<sub>2</sub> to induce clotting, or not. Chemical characterization was done by time-of-flight secondary ion mass spectrometry with principal component analysis (ToF-SIMS/PCA). The interface morphology was studied with scanning electron and atomic force microscopy. Immunofluorescence microscopy was used to identify platelets and infer their activation state. We observe clear differences among the four types of interfaces by ToF-SIMS/PCA. Some of these could be straightforwardly related to the differences in the sample morphology and known effects of platelet activation, but others are more subtle. Strikingly, it was possible to differentiate between these samples by ToF-SIMS/PCA of the protein species alone. This clearly indicates that the composition, orientation, and/or conformation of the proteins in these specimens depend both on the platelets' presence and on their activation. The ToF-SIMS imaging functionality furthermore provides unique insight into the distribution of phospholipid species in these samples
    corecore