213 research outputs found

    Radiation-Induced Degradation Mechanism of X-ray SOI Pixel Sensors with Pinned Depleted Diode Structure

    Full text link
    The X-ray Silicon-On-Insulator (SOI) pixel sensor named XRPIX has been developed for the future X-ray astronomical satellite FORCE. XRPIX is capable of a wide-band X-ray imaging spectroscopy from below 1 keV to a few tens of keV with a good timing resolution of a few tens of μ\mus. However, it had a major issue with its radiation tolerance to the total ionizing dose (TID) effect because of its thick buried oxide layer due to the SOI structure. Although new device structures introducing pinned depleted diodes dramatically improved radiation tolerance, it remained unknown how radiation effects degrade the sensor performance. Thus, this paper reports the results of a study of the degradation mechanism of XRPIX due to radiation using device simulations. In particular, mechanisms of increases in dark current and readout noise are investigated by simulation, taking into account the positive charge accumulation in the oxide layer and the increase in the surface recombination velocity at the interface between the sensor layer and the oxide layer. As a result, it is found that the depletion of the buried p-well at the interface increases the dark current, and that the increase in the sense-node capacitance increases the readout noise.Comment: 7 pages, 10 figures, accepted for publication in IEEE-TN

    Shallow Subsurface Structure in the Hualien Basin and Relevance to the Damage Pattern and Fault Rupture during the 2018 Hualien Earthquake

    Get PDF
    The 2018 M[w] 6.4 Hualien earthquake generated a large peak-to-peak velocity of over 2  m/s, with a period of 3 s at the south end of the Milun fault, which resulted in the collapse of five buildings. To investigate the shallow subsurface soil structure and evaluate possible effects on the ground motion and building damage, we performed microtremor measurements in the Hualien basin. Based on the velocity structure jointly inverted from both Rayleigh-wave dispersion curves and microtremor horizontal-to-vertical spectral ratio data, we found that the shallow subsurface structure generally deepens from west to east. Close to the Milun fault, the structure becomes shallower, which is consistent with faulting during the 2018 earthquake and the long-term tectonic displacement. There is no significant variation for the site conditions in the north–south direction that can explain the large peak ground velocity in the south. As a result of the dense measurements in the heavily damaged area, where three high-rise buildings totally collapsed, these locations have the average S-wave velocity of the upper 30 m (AVs₃₀) values and are relatively high compared to the more distant area from the Meilun River. This is somewhat unusual, because lower AVs₃₀ values indicating softer ground conditions are expected close to the river. We did not find any characteristic subsurface soil structure that may contribute to the building collapses. The large 3 s pulse was probably generated by source effects, rather than subsurface soil amplification
    corecore