18 research outputs found

    Surface Science of Graphene-Based Monoliths and Their Electrical, Mechanical, and Energy Applications

    Get PDF
    Ceramic monoliths are applied in many insulating and high resistive engineering applications, but the energy application of ceramics monoliths is still vacant due to less conductivity of monolithic ceramics (for example, in silica- and alumina-based hybrids). This book chapter is a significant contribution in the graphene industry as it explains some novel and modified fabrication techniques for ceramics-graphene hybrids. The improved physical properties may be used to set ceramics-graphene hybrids as a standard for electrical, mechanical, thermal, and energy applications. Further, silica-rGO hybrids may be used as dielectric materials for high-temperature applications due to improved dielectric properties. The fabricated nano-assembly is important for a technological point of view, which may be further applied as electrolytes, catalysts, and conductive, electrochemically active, and dielectric materials for the high-temperature applications. In the end, this chapter discussed porous carbon as a massive source of electrochemical energy for supercapacitors and lithium-ion batteries. Carbon materials which are future of energy storage devices because of their ability to store energy in great capacity, so sustainability through smart materials got a huge potential, so hereby keeping in view all the technological aspects, this chapters sums up important contribution of graphene and porous carbon for applied applications

    Thermal Transport Properties of Bi2O2Se-Ag2Se Hybrid Structures

    Get PDF
    The series of Bi2O2Se-Ag2Se composites were synthesized by two step solid state reaction followed by Spark plasma sintering. To optimize their thermal transport properties, different weight percent (wt. %) of silver i-e, 10%, 15% and 20%, was added. The room temperature X-ray diffraction (XRD) and high temperature XRD was used to investigate the crystalline phases,  whereas the morphological study was conducted through FESEM. The thermal transport properties were evaluated from 323 K to 773 K, to study the effect of silver addition on thermal conductivity of all the composite samples. The reduced thermal conductivity of the composite with decreasing Ag contents is might be attributed to increase of the Ag2Se and Bi2O3 nano-inclusions in Bi2O2Se multi-phase-system that increased the phonon scattering regions and reduced the overall thermal conductivity significantly, up to 54 % for BA15SO as compared to that of BA20CO at 473 K

    Advanced Carbon Materials: Base of 21st Century Scientific Innovations in Chemical, Polymer, Sensing and Energy Engineering

    Get PDF
    Advance carbon material that includes graphene, fullerenes, hierarchical carbon, and CNTs are referred to as strength of revolution and advancement in the era of material science and technology. In general, 20th century corresponds to plastic meanwhile 21st century will be named as “Century of Graphene” owing to its exceptional physical properties. Graphene is now well-known and prominent 2D carbon allotrope that is considered as multipurpose material in comparison with any material discovered on earth. One of the interesting properties of graphene is strongest and lightest material that enables it to conduct electricity and heat as compared to any other material. Such features permit it to utilize in numerous applications including biosensors, electronic industry, environmental remediation, drug delivery, energy storage, and production as well. Owing to these capabilities, it can be stated that graphene can be utilized to improve effectiveness and performance of existing substances and materials. In the future, conjugation of graphene with other 2D material will be devolved to produce further remarkable compounds that make it appropriate for an extensive variety of applications. This chapter grants the utilization and applications of advanced carbons materials in chemical, polymer, sensing and energy enegineering

    Advanced Carbon Functional Materials for Superior Energy Storage

    Get PDF
    In the developing world, energy crisis is the main reason for less progress and development. Renewable and sustainable energy may be of bright future for scientific lagging and low-income countries; further, sustainability through smart materials got a huge potential; so, hereby keeping in view the energy crisis which the developing world is facing for many decades, we are proposing to write a chapter project for obtaining energy through cheap, sustainable, and functional advanced carbon materials. Carbon materials are the future of energy storage devices because of their ability to store energy in great capacity. The graphene is a material with amazing properties like no band gap, which turns graphene a wonderful candidate for use in the photovoltaic. Shortly, this chapter will discuss how superior energy storage may be obtained through various routes like using pyrrolic (N5) and pyridinic (N6) doping in advanced carbon functional materials, or superior energy by KOH activation in carbon materials, or through carbonization in organic matter, respectively. Further, for the advanced carbon functional materials, the superior energy storage using pyrrolic (N5) and pyridinic (N6) doping, or KOH activation, or through carbonization will be discussed one by one for lithium ion batteries, supercapacitors, and relevant energy devices, respectively

    Nanophotonics: Fundamentals, Challenges, Future Prospects and Applied Applications

    Get PDF
    Nanophotonics encompasses a wide range of nontrivial physical effects including light-matter interactions that are well beyond diffraction limits, and have opened up new avenues for a variety of applications in light harvesting, sensing, luminescence, optical switching, and media transmitting technologies. Recently, growing expertise of fusing nanotechnology and photonics has become fundamental, arising outskirts, challenging basic experimentation and opportunities for new technologies in our daily lives, and played a central role in many optical systems. It entails the theoretical study of photon’s interactions with matter at incredibly small scales, known as nanostructures, in order to prepare nanometer scale devices and accessories for processing, development, slowing down, influencing, and/or regulating photons through comprehending their behavior while interacting with or otherwise traveling via matter. This multidisciplinary field has also made an impact on industry, allowing researchers to explore new horizons in design, applied science, physical science, chemistry, materials science, and biomedical technologies. The foundations, nano-confinements, quantum manifestations, nanoscale interactions, numerical methods, and peculiarities of nonlinear optical phenomena in nano-photonics as well as projected nano-photonics consumption’s in our cutting-edge world, will be covered in this chapter

    Materials for Photovoltaics: Overview, Generations, Recent Advancements and Future Prospects

    Get PDF
    As a consequence of rising concern about the impact of fossil fuel-based energy on global warming and climate change, photovoltaic cell technology has advanced significantly in recent years as a sustainable source of energy. To date, photovoltaic cells have been split into four generations, with the first two generations accounting for the majority of the current market. First generation of thin-film technologies is based on monocrystalline or polycrystalline silicon and gallium arsenide cells and includes well-known medium- or low-cost technologies with moderate yields, whereas, second generation includes devices with lower efficiency and manufacturing costs. Third generation is based on novel materials and has a wide range of design options, as well as expensive but highly efficient cells. However, fourth generation, also known as “inorganics-in-organics,” combines the low cost and flexibility of polymer thin films with the durability of innovative inorganic nanostructures (metal nanoparticles or metal oxides) in organic-based nanomaterials (carbon nanotubes, graphene, and their derivatives). The aim of this chapter was to highlight the current state of photovoltaic cell technology in terms of manufacturing materials and efficiency by providing a comprehensive overview of the four generations as well as the relevance of graphene and its derivatives in solar cell applications

    Graphene Based Functional Hybrids: Design and Technological Applications

    Get PDF
    Because of the versatile chemical, physical, and electrical properties, graphene as well as its nanocomposites are regarded as the backbone of engineering and scientific innovation. Different physical and chemical methods are used to create sustainable carbon materials. Furthermore, fabrication methods are employed in order to produce the composites, which are of constituents with desirable properties. Because of their biocompatibility, graphene nanomaterials have enormous potential for improving biology and drug delivery. The proposed chapter provides a variety of fabrication methods for sustainable graphene composites and highlights various applications of graphene. Furthermore, graphene nanocomposites are promising multifunctional materials with improved tensile strength and elastic modulus. Despite some challenges and the fact that carbon nanotube/polymer composites are sometimes better in some specific performance, graphene nanocomposites may have a wide range of potential applications due to their outstanding properties and the low cost of graphene. Because these graphene composites have a controllable porous structure, a large surface area, high conductivity, high temperature stability, excellent anti-corrosion properties, and composite compatibility, they can be used in energy storage as electrocatalysts, electro-conductive additives, intercalation hosts, and an ideal substrate for active materials. Meanwhile, the chapter summaries the graphene nanocomposites requirements for technological innovation and scientific applied research
    corecore