409 research outputs found
Perilaku Minum Sopi pada Remaja di Kecamatan Maulafa, Kota Kupang
Sopi drinking behavior among adolescents in KupangPurposeThis research aimed to identify sopi drinking behavior among adolescents in Maulfa.MethodsThis research was a qualitative study with an exploratory design and phenomenological approach. The main informants were adolescents who drink sopi and supporter informants were religious leaders or community leaders, parents, sopi sellers, health workers and adolescents who did not drink sopi. Data collection used observations, In-depth interviews, and focus group discussions. The informant sampling was obtained by purposive sampling through convenience sampling strategy.ResultResults showed that adolescents start to drink sopi since junior high school and senior high school. They have known sopi since the age of 13-17 years old. The number of sopi consumed is usually about two-six bottles and they drink it together with their friends. Some factors that encourage teenagers to consume sopi are: 1) to obtain many friends and build friendship; and 2) to know each other well and to make a good communication between them.ConclusionSocial factors such as a culture play an important role to build the sopi drinking behavior in adolescents. The adolescents consider that sopi drinking behavior is an easy thing to do because it is easy to obtain and cheap
Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations
Banded iron formations (BIFs) are rock deposits common in the Archean and Paleoproterozoic (and regionally Neoproterozoic) sedimentary successions. Multiple hypotheses for their deposition exist, principally invoking the precipitation of iron via the metabolic activities of oxygenic, photoferrotrophic, and/or aerobic iron-oxidizing bacteria. Some isolated environments support chemistry and mineralogy analogous to processes involved in BIF deposition, and their study can aid in untangling the factors that lead to iron precipitation. One such process analog system occurs at Okuoku-hachikurou (OHK) Onsen in Akita Prefecture, Japan. OHK is an iron- and CO_2-rich, circumneutral hot spring that produces a range of precipitated mineral textures containing fine laminae of aragonite and iron oxides that resemble BIF fabrics. Here, we have performed 16S rRNA gene amplicon sequencing of microbial communities across the range of microenvironments in OHK to describe the microbial diversity present and to gain insight into the cycling of iron, oxygen, and carbon in this ecosystem. These analyses suggest that productivity at OHK is based on aerobic iron-oxidizing Gallionellaceae. In contrast to other BIF analog sites, Cyanobacteria, anoxygenic phototrophs, and iron-reducing micro-organisms are present at only low abundances. These observations support a hypothesis where low growth yields and the high stoichiometry of iron oxidized per carbon fixed by aerobic iron-oxidizing chemoautotrophs like Gallionellaceae result in accumulation of iron oxide phases without stoichiometric buildup of organic matter. This system supports little dissimilatory iron reduction, further setting OHK apart from other process analog sites where iron oxidation is primarily driven by phototrophic organisms. This positions OHK as a study area where the controls on primary productivity in iron-rich environments can be further elucidated. When compared with geological data, the metabolisms and mineralogy at OHK are most similar to specific BIF occurrences deposited after the Great Oxygenation Event, and generally discordant with those that accumulated before it
Ion acceleration during internal magnetic reconnection events in TST-2
Characteristics of ion acceleration in the internal magnetic reconnection
events (IRE) have been studied by means of a neutral particle energy analyzer
(NPA) in Tokyo Spherical Tokamak (TST-2). The major and minor radii are 0.38 m
and 0.25m, respectively. The magnetic field strength is 0.3T and the maximum
plasma current is up to 140 kA. The electron and ion temperatures are 0.4-0.5
keV and 0.1 keV, respectively and the electron density is ~1x1019 m-3. The NPA
can be scanned toroidally from q = 74° (cw) to q = 114° (ccw), where q
= 90° corresponds to the perpendicular sightline. The direction of the
plasma current is cw. The NPA signals are digitized at every 50 ms. The NPA is
calibrated in the energy range of 0.1 keV < E < 8.4 keV. When the IRE occurs,
it is observed that the plasma current increases by ~ 20% and the loop voltage
drops from 0.6 V to-5 V for ~ 0.1 ms. The enhanced charge exchange flux is
observed by more than one order of magnitude at ~ 1 keV for this reconnection
phase. The ion temperature increases by 80 eV at IREs. The angle q dependence
of increment of Ti shows that DTi (q = 74°) is higher than that for q =
114°. This observation suggests that an ion is accelerated initially in the
direction of magnetic field lines. The time evolution of the ion distribution
function is simulated with a Fokker-Planck code taking into account the
electric field effects.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
- …