639 research outputs found

    N-body Simulations of Satellite Formation around Giant Planets: Origin of Orbital Configuration of the Galilean Moons

    Full text link
    As the number of discovered extrasolar planets has been increasing, diversity of planetary systems requires studies of new formation scenarios. It is important to study satellite formation in circumplanetary disks, which is often viewed as analogous to formation of rocky planets in protoplanetary disks. We investigated satellite formation from satellitesimals around giant planets through N-body simulations that include gravitational interactions with a circumplanetary gas disk. Our main aim is to reproduce the observable properties of the Galilean satellites around Jupiter through numerical simulations, as previous N-body simulations have not explained the origin of the resonant configuration. We performed accretion simulations based on the work of Sasaki et al. (2010), in which an inner cavity is added to the model of Canup & Ward (2002, 2006). We found that several satellites are formed and captured in mutual mean motion resonances outside the disk inner edge and are stable after rapid disk gas dissipation, which explains the characteristics of the Galilean satellites. In addition, owing to the existence of the disk edge, a radial compositional gradient of the Galilean satellites can also be reproduced. An additional objective of this study is to discuss orbital properties of formed satellites for a wide range of conditions by considering large uncertainties in model parameters. Through numerical experiments and semianalytical arguments, we determined that if the inner edge of a disk is introduced, a Galilean-like configuration in which several satellites are captured into a 2:1 resonance outside the disk inner cavity is almost universal. In fact, such a configuration is produced even for a massive disk and rapid type I migration. This result implies the inevitability of a Galilean satellite formation in addition to providing theoretical predictions for extrasolar satellites.Comment: 20 pages, 9 figures, accepted for publication in Ap

    The Effects of a Stellar Encounter on a Planetesimal Disk

    Get PDF
    We investigate the effects of a passing stellar encounter on a planetesimal disk through analytical calculations and numerical simulations, and derive the boundary radius (aplaneta_{\rm planet}) outside which planet formation is inhibited by disruptive collisions with high relative velocities.Comment: 25 pages, 11 figures, included in 15 tex-files, 7 ps-files and 4 eps-file

    Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line

    Full text link
    Content: For up to a few millions of years, pebbles must provide a quasi-steady inflow of solids from the outer parts of protoplanetary disks to their inner regions. Aims: We wish to understand how a significant fraction of the pebbles grows into planetesimals instead of being lost to the host star. Methods:We examined analytically how the inward flow of pebbles is affected by the snow line and under which conditions dust-rich (rocky) planetesimals form. When calculating the inward drift of solids that is due to gas drag, we included the back-reaction of the gas to the motion of the solids. Results: We show that in low-viscosity protoplanetary disks (with a monotonous surface density similar to that of the minimum-mass solar nebula), the flow of pebbles does not usually reach the required surface density to form planetesimals by streaming instability. We show, however, that if the pebble-to-gas-mass flux exceeds a critical value, no steady solution can be found for the solid-to-gas ratio. This is particularly important for low-viscosity disks (alpha < 10^(-3)) where we show that inside of the snow line, silicate-dust grains ejected from sublimating pebbles can accumulate, eventually leading to the formation of dust-rich planetesimals directly by gravitational instability. Conclusions: This formation of dust-rich planetesimals may occur for extended periods of time, while the snow line sweeps from several au to inside of 1 au. The rock-to-ice ratio may thus be globally significantly higher in planetesimals and planets than in the central star.Comment: 5 pages, 3 figures; accepted for publication in Astronomy and Astrophysic
    • …
    corecore