44 research outputs found

    Role of CGRP in Neuroimmune Interaction via NF-κB Signaling Genes in Glial Cells of Trigeminal Ganglia

    Get PDF
    Activation of the trigeminal system causes the release of various neuropeptides, cytokines, and other immune mediators. Calcitonin gene-related peptide (CGRP), which is a potent algogenic mediator, is expressed in the peripheral sensory neurons of trigeminal ganglion (TG). It affects the inflammatory responses and pain sensitivity by modulating the activity of glial cells. The primary aim of this study was to use array analysis to investigate the effect of CGRP on the glial cells of TG in regulating nuclear factor kappa B (NF-κB) signaling genes and to further check if CGRP in the TG can affect neuron-glia activation in the spinal trigeminal nucleus caudalis. The glial cells of TG were stimulated with CGRP or Minocycline (Min) + CGRP. The effect on various genes involved in NF-κB signaling pathway was analyzed compared to no treatment control condition using a PCR array analysis. CGRP, Min + CGRP or saline was directly injected inside the TG and the effect on gene expression of Egr1, Myd88 and Akt1 and protein expression of cleaved Caspase3 (cleav Casp3) in the TG, and c-Fos and glial fibrillary acidic protein (GFAP) in the spinal section containing trigeminal nucleus caudalis was analyzed. Results showed that CGRP stimulation resulted in the modulation of several genes involved in the interleukin 1 signaling pathway and some genes of the tumor necrosis factor pathway. Minocycline pre-treatment resulted in the modulation of several genes in the glial cells, including anti-inflammatory genes, and neuronal activation markers. A mild increase in cleav Casp3 expression in TG and c-Fos and GFAP in the spinal trigeminal nucleus of CGRP injected animals was observed. These data provide evidence that glial cells can participate in neuroimmune interaction due to CGRP in the TG via NF-κB signaling pathway

    The role of chemical transmitters in neuron-glia interaction and pain in sensory ganglion

    Get PDF
    Neuropathic pain (NP) develops because of damage to the peripheral or central nervous system. It results in the hyperalgesia and allodynia. In the recent years, various researchers have studied the involvement of neuro-immune system in causing persistence of pain. The absence of synaptic contacts in the sensory ganglion makes them distinctive in terms of pain related signalling. In sensory ganglia, the neurotransmitters or the other modulators such as inflammatory substances produced by the ganglion cells, because of an injury, are responsible for the cross-excitation between neurons and neuron-glial interaction, thus affecting chemical transmission. This chemical transmission is considered mainly responsible for the chronicity and the persistent nature of neuropathic pain. This review examines the pain signalling due to neurotransmitter or cytokine release within the sensory ganglia. The specific areas focused on include: 1) the role of neurotransmitters released from the somata of sensory neurons in pain , 2) neuron-glia interaction and 3) role of cytokines in neuromodulation and pain

    Analgesic Effect of Tranilast in an Animal Model of Neuropathic Pain and Its Role in the Regulation of Tetrahydrobiopterin Synthesis

    Get PDF
    Trigeminal neuralgia is unilateral, lancinating, episodic pain that can be provoked by routine activities. Anticonvulsants, such as carbamazepine, are the drugs of choice; however, these possess side-effects. Microvascular decompression is the most effective surgical technique with a higher success rate, although occasionally causes adverse effects. The potential treatment for this type of pain remains unmet. Increased tetrahydrobiopterin (BH4) levels have been reported in association with axonal injury. This study aimed to evaluate the effect of tranilast on relieving neuropathic pain in animal models and analyze the changes in BH4 synthesis. Neuropathic pain was induced via infraorbital nerve constriction. Tranilast, carbamazepine, or saline was injected intraperitoneally to assess the rat’s post-intervention pain response. In the von Frey’s test, the tranilast and carbamazepine groups showed significant changes in the head withdrawal threshold in the ipsilateral whisker pad area. The motor coordination test showed no changes in the tranilast group, whereas the carbamazepine group showed decreased performance, indicating impaired motor coordination. Trigeminal ganglion tissues were used for the PCR array analysis of genes that regulate the BH4 pathway. Downregulation of the sepiapterin reductase (Spr) and aldoketo reductase (Akr) genes after tranilast injection was observed compared to the pain model. These findings suggest that tranilast effectively treats neuropathic pain

    神経障害性疼痛モデル動物におけるトラニラストの鎮痛効果とテトラヒドロビオプテリン合成制御の役割

    Get PDF
    Trigeminal neuralgia is unilateral, lancinating, episodic pain that can be provoked by routine activities. Anticonvulsants, such as carbamazepine, are the drugs of choice; however, these possess side-effects. Microvascular decompression is the most effective surgical technique with a higher success rate, although occasionally causes adverse effects. The potential treatment for this type of pain remains unmet. Increased tetrahydrobiopterin (BH4) levels have been reported in association with axonal injury. This study aimed to evaluate the effect of tranilast on relieving neuropathic pain in animal models and analyze the changes in BH4 synthesis. Neuropathic pain was induced via infraorbital nerve constriction. Tranilast, carbamazepine, or saline was injected intraperitoneally to assess the rat’s post-intervention pain response. In the von Frey’s test, the tranilast and carbamazepine groups showed significant changes in the head withdrawal threshold in the ipsilateral whisker pad area. The motor coordination test showed no changes in the tranilast group, whereas the carbamazepine group showed decreased performance, indicating impaired motor coordination. Trigeminal ganglion tissues were used for the PCR array analysis of genes that regulate the BH4 pathway. Downregulation of the sepiapterin reductase (Spr) and aldoketo reductase (Akr) genes after tranilast injection was observed compared to the pain model. These findings suggest that tranilast effectively treats neuropathic pain

    CGRPは三叉神経節衛星グリア細胞からのサイトカイン遊離と口腔顔面侵害性疼痛を誘発する

    Get PDF
    Neuron-glia interactions contribute to pain initiation and sustainment. Intra-ganglionic (IG) secretion of calcitonin gene-related peptide (CGRP) in the trigeminal ganglion (TG) modulates pain transmission through neuron-glia signaling, contributing to various orofacial pain conditions. The present study aimed to investigate the role of satellite glial cells (SGC) in TG in causing cytokine-related orofacial nociception in response to IG administration of CGRP. For that purpose, CGRP alone (10 μL of 10-5 M), Minocycline (5 μL containing 10 μg) followed by CGRP with one hour gap (Min + CGRP) were administered directly inside the TG in independent experiments. Rats were evaluated for thermal hyperalgesia at 6 and 24 h post-injection using an operant orofacial pain assessment device (OPAD) at three temperatures (37, 45 and 10 ℃). Quantitative real-time PCR was performed to evaluate the mRNA expression of IL-1β, IL-6, TNF-α, IL-1 receptor antagonist (IL-1RA), sodium channel 1.7 (NaV 1.7, for assessment of neuronal activation) and glial fibrillary acidic protein (GFAP, a marker of glial activation). The cytokines released in culture media from purified glial cells were evaluated using antibody cytokine array. IG CGRP caused heat hyperalgesia between 6–24 h (paired-t test, p < 0.05). Between 1 to 6 h the mRNA and protein expressions of GFAP was increased in parallel with an increase in the mRNA expression of pro-inflammatory cytokines IL-1β and anti-inflammatory cytokine IL-1RA and NaV1.7 (one-way ANOVA followed by Dunnett’s post hoc test, p < 0.05). To investigate whether glial inhibition is useful to prevent nociception symptoms, Minocycline (glial inhibitor) was administered IG 1 h before CGRP injection. Minocycline reversed CGRP-induced thermal nociception, glial activity, and down-regulated IL-1β and IL-6 cytokines significantly at 6 h (t-test, p < 0.05). Purified glial cells in culture showed an increase in release of 20 cytokines after stimulation with CGRP. Our findings demonstrate that SGCs in the sensory ganglia contribute to the occurrence of pain via cytokine expression and that glial inhibition can effectively control the development of nociception

    神経障害性疼痛における三叉神経筋内のIL-10とCXCL2

    Get PDF
    Many trigeminal neuropathic pain patients suffer severe chronic pain. The neuropathic pain might be related with cross-excitation of the neighboring neurons and satellite glial cell (SGCs) in the sensory ganglia and increasing the pain signals from the peripheral tissue to the central nervous system. We induced trigeminal neuropathic pain by infraorbital nerve constriction injury (IONC) in Sprague-Dawley rats. We tested cytokine (CXCL2 and IL-10) levels in trigeminal ganglia (TGs) after trigeminal neuropathic pain induction, and the effect of direct injection of the anti-CXCL2 and recombinant IL-10 into TG. We found that IONC induced pain behavior. Additionally, IONC induced satellite glial cell activation in TG and cytokine levels of TGs were changed after IONC. CXCL2 levels increased on day 1 of neuropathic pain induction and decreased gradually, with IL-10 levels showing the opposite trend. Recombinant IL-10 or anti-CXCL2 injection into TG decreased pain behavior. Our results show that IL-10 or anti-CXCL2 are therapy options for neuropathic pain

    Comparison between Flipped Classroom and Team-based Learning

    Get PDF
    Active learning is a concept that allows students to study and learn actively by themselves to get knowledge. There are several methods of active learning, including flipped classroom (FC) and team-based learning (TBL). In FC, students are required to study before classes. In TBL, students also study before class, take individual readiness assurance test (iRAT) and team readiness assurance test (tRAT), then discuss group assignment projects (GAPs) during class. The purpose of this study was to compare the effectiveness between FC and TBL. The effectiveness of FC and TBL was assessed from the results of the term-end examinations, questionnaires and practice examinations. To check the difficulty of the term-end examinations, control dentists took the same examinations and we calculated the equating score with item response theory. Statistical analysis showed that the correct answer rate in term-end examinations was significantly different in comparison with the time of the trial, and for the participants (students and dentists). The term-end examination score of FC and TBL did not show a statistical difference. The student questionnaire showed that TBL had higher scores than FC on various factors such as student positive attitude, preparation, ingenuity of teacher and achieving the class goals. The crown & bridge score from the practice examination of 6th-year students who had FC + TBL were constantly higher than the Japanese national average score. The identification index of FC and TBL did not show the statistical difference and there was no statistical difference on item response theory between FC and TBL

    Analgesic Effect of Tranilast in an Animal Model of Neuropathic Pain and Its Role in the Regulation of Tetrahydrobiopterin Synthesis

    No full text
    Trigeminal neuralgia is unilateral, lancinating, episodic pain that can be provoked by routine activities. Anticonvulsants, such as carbamazepine, are the drugs of choice; however, these possess side-effects. Microvascular decompression is the most effective surgical technique with a higher success rate, although occasionally causes adverse effects. The potential treatment for this type of pain remains unmet. Increased tetrahydrobiopterin (BH4) levels have been reported in association with axonal injury. This study aimed to evaluate the effect of tranilast on relieving neuropathic pain in animal models and analyze the changes in BH4 synthesis. Neuropathic pain was induced via infraorbital nerve constriction. Tranilast, carbamazepine, or saline was injected intraperitoneally to assess the rat&rsquo;s post-intervention pain response. In the von Frey&rsquo;s test, the tranilast and carbamazepine groups showed significant changes in the head withdrawal threshold in the ipsilateral whisker pad area. The motor coordination test showed no changes in the tranilast group, whereas the carbamazepine group showed decreased performance, indicating impaired motor coordination. Trigeminal ganglion tissues were used for the PCR array analysis of genes that regulate the BH4 pathway. Downregulation of the sepiapterin reductase (Spr) and aldoketo reductase (Akr) genes after tranilast injection was observed compared to the pain model. These findings suggest that tranilast effectively treats neuropathic pain
    corecore