18 research outputs found

    Resistive and magnetized accretion flows with convection

    Full text link
    We considered the effects of convection on the radiatively inefficient accretion flows (RIAF) in the presence of resistivity and toroidal magnetic field. We discussed the effects of convection on transports of angular momentum and energy. We established two cases for the resistive and magnetized RIAFs with convection: assuming the convection parameter as a free parameter and using mixing-length theory to calculate convection parameter. A self-similar method was used to solve the integrated equations that govern the behavior of the presented model. The solutions showed that the accretion and rotational velocities decrease by adding the convection parameter, while the sound speed increases. Moreover, by using mixing-length theory to calculate convection parameter, we found that the convection can be important in RIAFs with magnetic field and resistivity.Comment: 7 pages, 3 figures, accepted by Ap&S

    An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion

    Full text link
    We apply the theory of algebraic polynomials to analytically study the transonic properties of general relativistic hydrodynamic axisymmetric accretion onto non-rotating astrophysical black holes. For such accretion phenomena, the conserved specific energy of the flow, which turns out to be one of the two first integrals of motion in the system studied, can be expressed as a 8th^{th} degree polynomial of the critical point of the flow configuration. We then construct the corresponding Sturm's chain algorithm to calculate the number of real roots lying within the astrophysically relevant domain of R\mathbb{R}. This allows, for the first time in literature, to {\it analytically} find out the maximum number of physically acceptable solution an accretion flow with certain geometric configuration, space-time metric, and equation of state can have, and thus to investigate its multi-critical properties {\it completely analytically}, for accretion flow in which the location of the critical points can not be computed without taking recourse to the numerical scheme. This work can further be generalized to analytically calculate the maximal number of equilibrium points certain autonomous dynamical system can have in general. We also demonstrate how the transition from a mono-critical to multi-critical (or vice versa) flow configuration can be realized through the saddle-centre bifurcation phenomena using certain techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and Gravitation

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (10910.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    The interaction of dark matter cusp with the baryon component in disk galaxies

    Full text link
    In this paper we examine the effect of the formation and evolution of the disk galaxy on the distribution of dark halo matter. We have made simulations of isolated dark matter (DM) halo and two component (DM + baryons). N-body technique was used for stellar and DM particles and TVD MUSCL scheme for gas-dynamic simulations. The simulations include the processes of star formation, stellar feedback, heating and cooling of the interstellar medium. The results of numerical experiments with high spatial resolution let us to conclude in two main findings. First, accounting of star formation and supernova feedback resolves the so-called problem of cusp in distribution of dark matter predicted by cosmological simulations. Second, the interaction of dark matter with dynamic substructures of stellar and gaseous galactic disk (e.g., spiral waves, bar) has an impact on the shape of the dark halo. In particular, the in-plane distribution of dark matter is more symmetric in runs, where the baryonic component was taken into account.Comment: 7 pages, 6 figure

    Dynamics of charged dust particles in protoplanetary discs

    Full text link
    We study the effect of an imposed magnetic field on the motion of charged dust particles in magnetically active regions of a protoplanetary disc. Assuming a power law structure for the vertical and the toroidal components of the magnetic field for the regions beyond magnetically dead region of the disc, the radial and the vertical velocities of the charged particles, in the asymptotic case of small particles, are calculated analytically. While grains with radii smaller than a critical radius significantly are affected by the magnetic force, motion of the particles with larger radii is independent of the magnetic field. The critical radius depends on the magnetic geometry and the charge of the grains. Assuming that a grain particle has one elementary charge and the physical properties of the disc correspond to a minimum-mass solar nebula, we show that only micron-sized grains are affected by the magnetic force. Also, charge polarity determines direction of the radial velocity. For such small particles, both the radial and the vertical velocities increase due to the magnetic force.Comment: Accepted for publication in Astrophysics & Space Scienc

    Current Status of Simulations

    Full text link
    As the title suggests, the purpose of this chapter is to review the current status of numerical simulations of black hole accretion disks. This chapter focuses exclusively on global simulations of the accretion process within a few tens of gravitational radii of the black hole. Most of the simulations discussed are performed using general relativistic magnetohydrodynamic (MHD) schemes, although some mention is made of Newtonian radiation MHD simulations and smoothed particle hydrodynamics. The goal is to convey some of the exciting work that has been going on in the past few years and provide some speculation on future directions.Comment: 15 pages, 14 figures, to appear in the proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 October 2012

    Theory of magnetically powered jets

    Full text link
    The magnetic theory for the production of jets by accreting objects is reviewed with emphasis on outstanding problem areas. An effort is made to show the connections behind the occasionally diverging nomenclature in the literature, to contrast the different points of view about basic mechanisms, and to highlight concepts for interpreting the results of numerical simulations. The role of dissipation of magnetic energy in accelerating the flow is discussed, and its importance for explaining high Lorentz factors. The collimation of jets to the observed narrow angles is discussed, including a critical discussion of the role of `hoop stress'. The transition between disk and outflow is one of the least understood parts of the magnetic theory; its role in setting the mass flux in the wind, in possible modulations of the mass flux, and the uncertainties in treating it realistically are discussed. Current views on most of these problems are still strongly influenced by the restriction to 2 dimensions (axisymmetry) in previous analytical and numerical work; 3-D effects likely to be important are suggested. An interesting problem area is the nature and origin of the strong, preferably highly ordered magnetic fields known to work best for jet production. The observational evidence for such fields and their behavior in numerical simulations is discussed. I argue that the presence or absence of such fields may well be the `second parameter' governing not only the presence of jets but also the X-ray spectra and timing behavior of X-ray binaries.Comment: 29 pages. Publication delays offered the opportunity for further corrections, an expansion of sect 4.2, and one more Fig. To appear in Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009

    Polar direct drive – Ignition at 1 MJ

    No full text
    Target designs to achieve direct-drive ignition on the NIF using the x-ray-drive beam configuration are examined. This approach, known as polar direct drive (PDD), achieves the required irradiation uniformity by repointing some of the beams toward the target equator, and by increasing the laser intensity at the equator to compensate for the reduced laser coupling from oblique irradiation. Techniques to increase the equatorial intensity can include using phase plates that produce elliptical spot shapes, increasing the power in beams directed toward the equator, and using a ring offset from the equator to redirect rays toward the target normal. The requirements for beam pointing, power balance, single-beam smoothing, and inner-ice-surface roughness are examined. Designs with an incident laser energy of 1.0 MJ are presented. The simulations use the 2-D hydrocode DRACO with 3-D ray trace to model the laser irradiation and Monte Carlo alpha particle transport to model the thermonuclear burn
    corecore