37 research outputs found

    Catalog of Nearby Isolated Galaxies in the Volume z<0.01

    Full text link
    We present a catalog of 520 most isolated nearby galaxies with radial velocities V_LG<3500 km/s covering the entire sky. This population of "space orphans" makes up 4.8% among 10900 galaxies with measured radial velocities. We describe the isolation criterion used to select our sample, called the "Local Orphan Galaxies" (LOG), and discuss their basic optical and HI properties. A half of the LOG catalog is occupied by the Sdm, Im and Ir morphological type galaxies without a bulge. The median ratio M_gas/M_star in the LOG galaxies exceeds 1. The distribution of the catalog galaxies on the sky looks uniform with some signatures of a weak clustering on the scale of about 0.5 Mpc. The LOG galaxies are located in the regions where the mean local density of matter is approximately 50 times lower than the mean global density. We indicate a number of LOG galaxies with distorted structures, which may be the consequence of interaction of isolated galaxies with massive dark objects

    Mining the Local Volume

    Full text link
    After recent systematic optical, IR, and HI surveys, the total number of known galaxies within 10 Mpc has increased from 179 to 550. About half this Local Volume (LV) sample is now been imaged with HST, yielding the galaxy distances with an accuracy of about 8%. For the majority of the LV galaxies we currently have H-alpha fluxes that allow us to reconstruct the star formation history of our neighbourhood. For the late-type LV galaxies their HI masses and angular momentum follow the linear relation in the range of 4 orders, which is expected for rotating gaseous disks being near the gravitational instability threshold. The data obtained on the LV galaxies imply important cosmological parameters, in particular, the mean local matter density and HI mass density, as well as SFR density. Surprisingly, the local Hubble flow around the LV groups is very quiet, with 1D rms deviations of 25 km/s,which is a signature of the Universe vacuum-dominated on small scales. The cold infall pattern around nearby groups provides us with a new method to determine the total mass of the groups independent from virial mass estimates.Comment: 10 pages, 6 figures, proceedings Symposium "Galaxies in the Local Volume", Sydney, 8 - 13 July 2007, B. Koribalski and H. Jerjen, ed

    Matching the Local and Cosmic Star Formation Histories

    Full text link
    Given the many recent advances in our understanding of the star formation history (SFH) of the Local Group and other nearby galaxies, and in the evolution of star formation with redshift, we present a new comparison of the comoving space density of the star formation rate as a function of look-back time for the Local and Distant Universe. We update the Local SFH derived from the analysis of resolved stellar populations (``fossil records'') in individual nearby galaxies, based on our own estimations as well as available in the literature. While the preliminary comparison of SFHs is found to be broadly consistent, some discrepancies still remain, including an excess of the Local SFR density in the most recent epoch.Comment: 4 pages, slightly revised version from a contribution to 'Galaxies in the Local Volume', Sydney, 8 - 13 July 2007, B. Koribalski and H. Jerjen, ed

    Large-scale collective motion of RFGC galaxies

    Full text link
    We processed the data about radial velocities and HI linewidths for 1678 flat edge-on spirals from the Revised Flat Galaxy Catalogue. We obtained the parameters of the multipole components of large-scale velocity field of collective non-Hubble galaxy motion as well as the parameters of the generalized Tully-Fisher relationship in the "HI line width - linear diameter" version. All the calculations were performed independently in the framework of three models, where the multipole decomposition of the galaxy velocity field was limited to a dipole, quadrupole and octopole terms respectively. We showed that both the quadrupole and the octopole components are statistically significant. On the basis of the compiled list of peculiar velocities of 1623 galaxies we obtained the estimations of cosmological parameters Omega_m and sigma_8. This estimation is obtained in both graphical form and as a constraint of the value S_8=sigma_8(Omega_m/0.3)^0.35 = 0.91 +/- 0.05.Comment: Accepted for publication in Astrophysics and Space Scienc

    Properties of voids in the Local Volume

    Full text link
    Current explanation of the overabundance of dark matter subhalos in the Local Group (LG) indicates that there maybe a limit on mass of a halo, which can host a galaxy. This idea can be tested using voids in the distribution of galaxies: at some level small voids should not contain any (even dwarf) galaxies. We use observational samples complete to M_B=-12 with distances less than 8 Mpc to construct the void function (VF): the distribution of sizes of voids empty of any galaxies. There are ~ 30 voids with sizes ranging from 1 to 5 Mpc. We also study the distribution of dark matter halos in very high resolution simulations of the LCDM model. The theoretical VF matches the observations remarkably well only if we use halos with circular velocities larger than 45 +/- 10 km/s. This agrees with the Local Group predictions. Small voids look quite similar to heir giant cousins: the density has a minimum at the center of a void and it increases as we get closer to the border. Thus, both the Local Group data and the nearby voids indicate that isolated halos below 45 +/- 10 km/s must not host galaxies and that small (few Mpc) voids are truly dark.Comment: 5 pages 1 figure. To appear in proceedings of the conference "Galaxies in the Local Volume", Sydney, 8 to 13 July 200

    The Local Velocity Anomaly

    Full text link
    There is a velocity discontinuity at about 7 Mpc between the galaxies of the Local Sheet that are moving together with low internal velocity dispersion and the adjacent structures. The Local Sheet bounds the Local Void. The Local Sheet is determined to have a peculiar velocity of 260 km/s away from the center of the void. In order for this large velocity to be generated by an absence of gravity, the Local Void must be at least 45 Mpc in diameter and be very empty.Comment: Invited review, "Galaxies in the Local Volume", Sydney, 8-13 July, 2007. eds. B. Koribalski & H. Jerjen, Astrophys. & Space Sci. Proceed. 10 pages with 7 figure

    Binary Galaxies in the Local Supercluster and Its Neighborhood

    Full text link
    We report a catalog of 509 pairs identified among 10403 nearby galaxies with line-of-sight velocities V_LG < 3500 km/s.We selected binary systems in accordance with two criteria (bounding and temporal), which require the physical pair of galaxies to have negative total energy and its components to be located inside the zero-velocity surface. We assume that individual galaxy masses are proportional to their total K-band luminosities, M = L_K x 6M/L. The catalog gives the magnitudes and morphological types of galaxies and also the projected (orbital) masses and pair isolation indices. The component line-of-sight velocity differences and projected distances of the binary systems considered have power-law distributions with the median values of 35 km/s and 123 kpc, respectively. The median mass-to-K-band luminosity ratio is equal to 11 M/L, and its uncertainty is mostly due to the errors of measured velocities. Our sample of binary systems has a typical density contrast of d ro/ro_c ~ 500 and a median crossing time of about 3.5 Gyr. We point out the substantial fraction of binary systems consisting of late-type dwarf galaxies, where the luminosities of both components are lower than that of the Small Magellanic Cloud. The median projected distance for 41 such pairs is only 30 kpc, and the median difference of their line-of-sight velocities is equal to 14 km/s which is smaller than the typical error for radial-velocity (30 km/s). This specific population of gas-rich dwarf binary galaxies such as I Zw 18 may be at the stage immediately before merging of its components. Such objects, which are usually lost in flux-limited (and not distance-limited) samples deserve a thorough study in the HI radio line with high spatial and velocity resolution.Comment: published in Astrophysical Bulletin, 2008, Vol. 63, No. 4, pp. 299-34

    Large-scale collective motion of RFGC galaxies in curved space-time

    Full text link
    We consider large-scale collective motion of flat edge-on spiral galaxies from the Revised Flat Galaxy Catalogue (RFGC) taking into account the curvature of space-time in the Local Universe at the scale 100 Mpc/h. We analyse how the relativistic model of collective motion should be modified to provide the best possible values of parameters, the effects that impact these parameters and ways to mitigate them. Evolution of galactic diameters, selection effects, and difference between isophotal and angular diameter distances are inadequate to explain this impact. At the same time, measurement error in HI line widths and angular diameters can easily provide such an impact. This is illustrated in a toy model, which allows analytical consideration, and then in the full model using Monte Carlo simulations. The resulting velocity field is very close to that provided by the non-relativistic model of motion. The obtained bulk flow velocity is consistent with {\Lambda}CDM cosmology.Comment: 10 pages, 3 figures, 2 table

    Detection of an intergalactic meteor particle with the 6-m telescope

    Full text link
    On July 28, 2006 the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences recorded the spectrum of a faint meteor. We confidently identify the lines of FeI and MgI, OI, NI and molecular-nitrogen N_2 bands. The entry velocity of the meteor body into the Earth's atmosphere estimated from radial velocity is equal to 300 km/s. The body was several tens of a millimeter in size, like chondrules in carbon chondrites. The radiant of the meteor trajectory coincides with the sky position of the apex of the motion of the Solar system toward the centroid of the Local Group of galaxies. Observations of faint sporadic meteors with FAVOR TV CCD camera confirmed the radiant at a higher than 96% confidence level. We conclude that this meteor particle is likely to be of extragalactic origin. The following important questions remain open: (1) How metal-rich dust particles came to be in the extragalactic space? (2) Why are the sizes of extragalactic particles larger by two orders of magnitude (and their masses greater by six orders of magnitude) than common interstellar dust grains in our Galaxy? (3) If extragalactic dust surrounds galaxies in the form of dust (or gas-and-dust) aureoles, can such formations now be observed using other observational techniques (IR observations aboard Spitzer satellite, etc.)? (4) If inhomogeneous extragalactic dust medium with the parameters mentioned above actually exists, does it show up in the form of irregularities on the cosmic microwave background (WMAP etc.)?Comment: 9 pages, 6 EPS figure

    Gas rich galaxies from the FIGGS survey

    Full text link
    The FIGGS (Faint Irregular Galaxy GMRT Survey) is aimed at creating a multi-wavelength observational data base for a volume limited sample of the faintest gas rich galaxies. In this paper we discuss two very gas rich galaxies that were observed as part of the FIGGS survey, viz. NGC 3741 and And IV. These galaxies are unusual in that they have extremely extended gas disks and very high ratios of dark to luminous matter. The very extended HI disks provide an unique opportunity to trace the extended distribution of dark matter around faint galaxies. We compare the baryon fraction of these galaxies with a sample of galaxies with well measured rotation curves and discuss whether extremely gas rich dwarf galaxies have abnormally small baryon fractions.Comment: 5 Pages, 4 Figures. To be published in the proceedings of "Galaxies in the Local Volume", ed. B. Koribalski, H. Jerje
    corecore