151 research outputs found
t(6;14)(p25;q32) IRF4/IGH - t(2;6)(p12;p25) IRF4/IGK - t(6;22)(p25;q11) IRF4/IGL
Review on t(6;14)(p25;q32) IRF4/IGH - t(2;6)(p12;p25) IRF4/IGK - t(6;22)(p25;q11) IRF4/IGL, with data on clinics, and the genes involved
The molecular hallmarks of primary and secondary vitreoretinal lymphoma
Vitreoretinal lymphoma (VRL) is a rare subtype of diffuse large B-cell lymphoma (DLBCL) considered a variant of primary central nervous system lymphoma (PCNSL). Diagnosis of VRL requires examination of vitreous fluid, but cytologic differentiation from uveitis remains difficult. Due to its rarity and difficulty in obtaining diagnostic material, little is known about the genetic profile of VRL. The aim of our study was to investigate the mutational profile of a large series of primary and secondary VRL. Targeted next generation sequencing using a custom panel containing the most frequent mutations in PCNSL was performed on 34 vitrectomy samples of 31 patients with VRL and negative controls with uveitis. In a subset of cases, genome-wide copy number alterations (CNA) were assessed using the Oncoscan platform. Mutations in MYD88 (74%), PIM1 (71%), CD79B (55%), IGLL5 (52%), TBL1XR1 (48%), ETV6 (45%) and 9p21/CDKN2A deletions (85%) were the most common alterations, with similar frequencies in primary (15), synchronous (3) or secondary (13) VRL. This mutational spectrum is similar to MYD88mut/CD79Bmut (MCD or cluster 5) DLBCL with activation of Toll-like and B-cell receptor pathways and CDKN2A loss, confirming their close relationship. Oncoscan analysis demonstrated a high number of CNAs (mean 18.6/case). Negative controls lacked mutations or CNAs. Using cell free DNA of vitreous fluid supernatant, mutations present in cellular DNA were reliably detected in all examined cases. Mutational analysis is a highly sensitive and specific tool for the diagnosis of VRL and can also be applied successfully to cell free DNA derived from the vitreous.Copyright © 2021 American Society of Hematology
Dual PI3K/mTOR inhibition is required to effectively impair microenvironment survival signals in mantle cell lymphoma
Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we have performed a comparative analysis of the mTOR inhibitor everolimus, the pan-PI3K inhibitor NVP-BKM120 and the dual PI3K/mTOR inhibitor NVP-BEZ235 in primary MCL cells. We found NVP-BEZ235 to be more powerful than everolimus or NVP-BKM120 in PI3K/Akt/mTOR signaling inhibition, indicating that targeting the PI3K/Akt/mTOR pathway at multiple levels is likely to be a more effective strategy for the treatment of MCL than single inhibition of these kinases. Among the three drugs, NVP-BEZ235 induced the highest change in gene expression profile. Functional validation demonstrated that NVP-BEZ235 inhibited angiogenesis, migration and tumor invasiveness in MCL cells. NVP-BEZ235 was the only drug able to block IL4 and IL6/STAT3 signaling which compromise the therapeutic effect of chemotherapy in MCL. Our findings support the use of the dual PI3K/mTOR inhibitor NVP-BEZ235 as a promising approach to interfere with the microenvironment-related processes in MCL
Arendt and political realism: towards a realist account of political judgement
This article argues that Hannah Arendtâs thought can offer significant insights on political judgement for realism in political theory. We identify a realist position which emphasises the need to account for how humans judge politically, contra moralist tendencies to limit its exercise to rational standards, but which fails to provide a sufficient conception of its structure and potential. Limited appeals to political judgement render the realist defence of the political elusive, and compromise the endeavour to offer a meaningful alternative to the moralist tendency to displace politics. The potential and limitations of realist discussions on judgement are made visible in relation to proto-realists Judith Shklar and Isaiah Berlin.
In seeking to enrich the realist conception of the political, the article introduces the displacement critique found in the neglected Arendtian ârealismâ. It also provides the foundations for a distinctly realist account of political judgement which, we argue, requires elaboration along two dimensions: the social coding of political judgement and the political capacities that help judgement build a suitable political sphere
Transfer RNA-derived small RNAs in the cancer transcriptome
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in aâlargerâsmall RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing
MicroRNAs expression, chromosomal alterations and immunoglobulin variable Heavy chain hypermutations in Mantle Cell Lymphomas
The contribution of microRNAs (miR) to the pathogenesis of mantle cell lymphoma (MCL) is not well known.We investigated
the expression of 86 mature miRs mapped to frequently altered genomic regions in MCL in CD5+/CD5 normal B cells, reactive
lymph nodes, and purified tumor cells of 17 leukemic MCL, 12 nodal MCL, and 8MCL cell lines. Genomic alterations of the
tumors were studied by single nucleotide polymorphism arrays
and comparative genomic hybridization. Leukemic and nodal
tumors showed a high number of differentially expressed miRs
compared with purified normal B cells, but only some of them
were commonly deregulated in both tumor types. An unsupervised
analysis of miR expression profile in purified leukemic
MCL cells revealed two clusters of tumors characterized by
different mutational status of the immunoglobulin genes,
proliferation signature, and number of genomic alterations.
The expression of most miRs was not related to copy number
changes in their respective chromosomal loci. Only the levels
of miRs included in the miR-17-92 cluster were significantly
related to genetic alterations at 13q31. Moreover, overexpression
of miR-17-5p/miR-20a from this cluster was associated
with high MYC mRNA levels in tumors with a more aggressive
behavior. In conclusion, the miR expression pattern of MCL is
deregulated in comparison with normal lymphoid cells and
distinguishes two subgroups of tumors with different biological
features.Postprint (updated version
Intravascular Large B-Cell Lymphoma Genomic Profile Is Characterized by Alterations in Genes Regulating NF-ÎșB and Immune Checkpoints.
Intravascular large B-cell lymphoma (IVLBCL) is an uncommon lymphoma with an aggressive clinical course characterized by selective growth of tumor cells within the vessels. Its pathogenesis is still uncertain and there is little information on the underlying genomic alterations. In this study, we performed a clinicopathologic and next-generation sequencing analysis of 15 cases of IVLBCL using a custom panel for the detection of alterations in 68 recurrently mutated genes in B-cell lymphomagenesis. Six patients had evidence of hemophagocytic syndrome. Four patients presented concomitantly a solid malignancy. Tumor cells outside the vessels were observed in 7 cases, 2 with an overt diffuse large B-cell cell lymphoma. In 4 samples, tumor cells infiltrated lymphatic vessel in addition to blood capillaries. Programmed death-ligand 1 (PD-L1) was positive in tumor cells in 4 of 11 evaluable samples and in macrophages intermingled with tumor cells in 8. PD-L1 copy number gains were identified in a higher proportion of cases expressing PD-L1 than in negative tumors. The most frequently mutated gene was PIM1 (9/15, 60%), followed by MYD88L265P and CD79B (8/15, 53% each). In 6 cases, MYD88L265P and CD79B mutations were detected concomitantly. We also identified recurrent mutations in IRF4 , TMEM30A , BTG2 , and ETV6 loci (4/15, 27% each) and novel driver mutations in NOTCH2 , CCND3 , and GNA13 , and an IRF4 translocation in 1 case each. The mutational profile was similar in patients with and without evidence of hemophagocytic syndrome and in cases with or without dissemination of tumor cells outside the vessels. Our results confirm the relevance of mutations in B-cell receptor/nuclear factor-ÎșB signaling and immune escape pathways in IVLBCL and identify novel driver alterations. The similar mutational profile in tumors with extravascular dissemination suggests that these cases may also be considered in the spectrum of IVLBCL
Genetic Predisposition to Chronic Lymphocytic Leukemia Is Mediated by a BMF Super-Enhancer Polymorphism
SummaryChronic lymphocytic leukemia (CLL) is an adult B cell malignancy. Genome-wide association studies show that variation at 15q15.1 influences CLL risk. We deciphered the causal variant at 15q15.1 and the mechanism by which it influences tumorigenesis. We imputed all possible genotypes across the locus and then mapped highly associated SNPs to areas of chromatin accessibility, evolutionary conservation, and transcription factor binding. SNP rs539846 C>A, the most highly associated variant (p = 1.42 à 10â13, odds ratio = 1.35), localizes to a super-enhancer defined by extensive histone H3 lysine 27 acetylation in intron 3 of B cell lymphoma 2 (BCL2)-modifying factor (BMF). The rs539846-A risk allele alters a conserved RELA-binding motif, disrupts RELA binding, and is associated with decreased BMF expression in CLL. These findings are consistent with rs539846 influencing CLL susceptibility through differential RELA binding, with direct modulation of BMF expression impacting on anti-apoptotic BCL2, a hallmark of oncogenic dependency in CLL
- âŠ