94 research outputs found
Зависимость диэлектрических свойств керамики титаната бария и композита на его основе от температуры спекания
In this paper, we compare the structure and dielectric properties of the samples of barium titanate ceramics that have been sintered at temperatures of 1100, 1150, 1200, 1250 and 1350 °C and dielectric characteristics of the samples of barium titanate (80 vol.%) — barium ferrite (20 vol.%). It is shown that only samples sintered at the temperature of 1250 and 1350 °C have polarization sufficient for the existence of the piezoelectric effect. For the same samples, the pyroelectric coefficient and reversal polarization significantly exceed those for samples sintered at lower temperatures. Analysis of the samples structure confirmed the dependence of the dielectric properties of the barium titanate ceramics on the grain size and, as a consequence, on the sintering temperature. Based on the studies carried out, the optimal temperature (1250 °С) for obtaining composite samples of barium titanate (80 vol.%) — barium ferrite (20 vol.%) was selected. The temperature dependence of the dielectric constant for the composite samples based on barium ferrite — barium titanate with a sintering temperature of 1250 °C is similar to the dependence for the BaTiO3 ceramic samples sintered at 1350 °C. At room temperatures, the permittivity of the composite samples is also significantly higher than that of the barium titanate ceramic samples obtained at the same sintering temperatures. The addition of barium ferrite to the barium titanate not only increased the permittivity of the composite, but also led to a diffusing of the ferroelectric phase transition and a shift in the temperature of the maximum of the dielectric constant by 10 degrees towards high temperatures.Проведено сравнение структуры и диэлектрических свойств образцов керамики титаната бария, спеченных при температурах 1100, 1150, 1200, 1250 и 1350 °С, и диэлектрических характеристик образцов композита титанат бария (80 % (об.)) — феррит бария (20 % (об.)), спеченных при температурах 1150, 1200 и 1250 °С. Показано, что поляризацию, достаточную для проявления пьезоэлектрического эффекта, имеют только образцы титаната бария, спеченные при температурах 1250 и 1350 °С. У этих же образцов величина пирокоэффициента и остаточной поляризации значительно превосходят аналогичные значения для образцов, спеченных при более низких температурах. Анализ структуры образцов подтвердил зависимость диэлектрических свойств керамики титаната бария от размера зерен и, как следствие, от температуры спекания. На основании проведенных исследований выбран оптимальный режим спекания образцов композита титанат бария (80 % (об.)) — феррит бария (20 % (об.)) —1250 °С. Дальнейшее повышение температуры до 1300 °С показало наличие у данного композита эвтектики. При этом температурная зависимость диэлектрической проницаемости для образцов композита на основе феррита бария — титаната бария с температурой спекания 1250 °С аналогичны зависимости для образцов керамики BaTiO3, спеченных при 1350 °С. При комнатных температурах у образцов композита диэлектрическая проницаемость также значительно больше, чем у образцов керамики титаната бария, полученных при тех же температурах спекания. Добавление феррита бария в состав титаната бария не только повысило диэлектрическую проницаемость композита, но и привело к размытию сегнетоэлектрического фазового перехода и смещению температуры максимума диэлектрической проницаемости на 10 градусов в сторону высоких температур.
Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch
We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1 x 10(14) and 7.7 x 10(14) electrons/cm(3). We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (< 15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels
AWAKE, the advanced proton driven plasma wakefield acceleration experiment at CERN
The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world׳s first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented
Path to AWAKE : evolution of the concept
This paper describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability - a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of the AWAKE design and construction status as presented in this conference is given in Gschwendtner et al. [1]
Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch
Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied
experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal
wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of
witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma
electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as
electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally
measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron
injection delay scan
Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities
We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton bunch. The modulation extends over the length of the proton bunch following the seed point. By varying the plasma density over one order of magnitude, we show that the modulation frequency scales with the expected dependence on the plasma density, i.e., it is equal to the plasma frequency, as expected from theory
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.264801]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement
- …